Affine Growth Diagrams

Tair Akhmejanov

Cornell University

Algebra: Rep Theory Notation

The **dominant weights** of GL_m , denoted Λ_+ , are nonincreasing sequences of integers λ of length m. The dual of a weight λ^* is given by negating and reversing.

 $\lambda = (3, 1, 1, 0, -2), \ \lambda^* = (2, 0, -1, -1, -3)$

The **minuscule weights** are the fundamental weights ω_i and the dual fundamental weights ω_i^* .

 $\omega_i = (1, 1, \dots, 1, 0, 0, \dots, 0), \ \omega_i^* = (0, 0, \dots, 0, -1, -1, \dots, -1)$ Let $c_{\lambda^1,\lambda^2,\ldots,\lambda^n} = \dim(V_{\lambda^1} \otimes \cdots \otimes V_{\lambda^n})^{GL_m}$ be the **Littlewood-Richardson co**efficient. Recall that tensoring with a minuscule rep is multiplicity free.

Geometry: Polygon Spaces

Let $Gr = GL_m(\mathbb{C}((t)))/GL_m(\mathbb{C}[[t]])$ be the affine Grassmannian. There is a distance **function** $d: Gr \times Gr \to \Lambda_+$. For a sequence of ndominant weights $\vec{\lambda}$ define the based **polygon space** $Poly(\lambda)$ to be the set of $(g_1,\ldots,g_{n-1}) \in Gr^{n-1}$ satisfying $d(g_{i-1},g_i) = \lambda^i$.

Theorem (Geometric Satake): The number of components of $Poly(\hat{\lambda})$ is $c_{\vec{\lambda}}$.

Combinatorics: Hives

A **3-hive** is a triangular array of integers satisfying the **rhombus** inequalities, for a unit rhombus the sum across the short edge is at least the sum across the long edge. An **n-hive** is an (n-1)-simplex worth of integers satisfying the rhombus

 $\rightarrow g_2$

Some Takeaways

1 Rediscover Stanley-Sundaram/Roby bijection: oscillating tableaux \leftrightarrow fixed-point-free involutions **2** Within bijection **1** rediscover Fomin diagrams and the RS correspondence: pairs of same shape tableaux \leftrightarrow permutations Can "Knuthify" 1 to get the bijection: semistandard oscillating tableaux \leftrightarrow fixed-point-free \mathbb{N} involutions 4 Within bijection 3 rediscover the RSK correspondence: pairs of same shape semistandard tableaux $\leftrightarrow \mathbb{N}$ matrices

Full Example

inequalities on each 2-face and the octahedron

recurrence, $e' = \max(a + c, b + d) - e$.

Theorem([2]): For a sequence of n dominant weights $\vec{\lambda}$ the number of n-hives with boundary $\vec{\lambda}$ is $c_{\vec{\lambda}}$.

Extroverted Triangulations

An **extroverted triangulation** of the *n*-gon consists of triangles each containing an edge of the *n*-gon. When the λ^i are minuscule the weights along the edges of an extroverted triangulation uniquely determine an n-hive. We can get the rest of the hive labels via repeated "excavations" of 4-hives.

Let n = 6 and $\lambda^1 = \lambda^2 = \lambda^3 = (1, 0, 0, \dots, 0), \ \lambda^4 = \lambda^5 = \lambda^6 = (0, \dots, 0, 0, -1).$ Then $\operatorname{Poly}(\vec{\lambda})$ has six components corresponding to six hives with boundary $\vec{\lambda}$ with weights along their 1-skeleton given by the following affine growth diagrams.

Ø E

Main Result

Define an **affine growth diagram** to be an infinite periodic staircase labelled by dominant weights such that each unit square satisfies the local rule and the southwest and northeast diagonals are labelled by $\emptyset = (0, \ldots, 0)$. An extroverted triangulation defines a path in the staircase.

The Local Rule: $\delta = \operatorname{sort}(\alpha + \beta - \gamma)$

Fix a component of $Poly(\lambda)$ and the corresponding *n*-hive with boundary λ . Given any extroverted triangulation τ and weights along the edges of τ , fill in a staircase diagram to the southeast according to the local rule to produce an affine growth diagram. Then the resulting vertex labels are the weights of the 1-skeleton of the *n*-hive. Moreover, the components of $Poly(\vec{\lambda})$ are in bijection with affine growth diagrams with $\dot{\lambda}$ down the first southwest diagonal.

Arising from a different combinatorial consideration, the local rule appears in [3].

- Bruce Fontaine, Joel Kamnitzer, Cyclic Sieving, Rotation, and Geometric Representation Theory, Selecta [1] Math., 20 no. 2 (2014) 609-625; math.RT/arXiv:1212.1314.
- Allen Knutson, Terence Tao, Christopher Woodward, A Positive Proof of the Littlewood-Richardson Rule [2]using the Octahedron Recurrence, Electronic Journal of Combinatorics, vol. 11, issue 1 (2004).
- [3]Marc A. A. van Leeuwen. An Analogue of Jeu de Taquin for Littelmann's Crystal Paths, Sém. Lothar. Combin., 41: Art. B41b, 23 pp. 1998.
- Tom Roby, Applications and Extensions of Fomin's Generalization of the Robinson-Schensted $\left[4\right]$ Correspondence to Differential Posets, Ph.D. Thesis, Massachusetts Institute of Technology, 1991.