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Introduction

The first barrier result in complexity theory was published in 1975 by Baker, Gill, and
Solovay when they showed that there exist oracles A, B such that PA = NPA and PB 6= NPB.
Therefore, if a candidate proof of P 6= NP remains valid when the machines are given access
to an oracle, then in particular it remains valid when the machines have access to A. Then
this same proof of P 6= NP also gives PA 6= NPA, but we know that this is false. The same
reasoning holds with the possibility of proving P = NP. Thus, the ideas in a potential
proof resolving the P vs. NP question must be affected by the introduction of oracles to the
machine model. At the time, most of the techniques in complexity theory, if not all, were
simulation and diagonalization arguments borrowed from logic, all of which are insensitive
to the introduction of oracles. Thus, analyzing the complexity of computability will require
techniques more powerful than those of classical computability theory, so the slogan became
that, “we must analyze computation rather than merely simulate it.”

Here we explore two more recent barriers, the first of which is a barrier to proving circuit
lower bounds. The circuit model was introduced as a potential research plan to analyze
computation more closely, thereby avoiding the relativization issue. But after many years
of research, there were no significant lower bounds for languages in classes such as NP,
and the few known lower bounds were for restricted models of circuits. In 1996 Razborov
and Rudich showed that this research program also has its own intrinsic barrier, offering a
potential explanation as to why such little progress had been made. As with the message
of the relativization barrier, this does not necessarily mean that the circuit model should
be completely abandoned, but that perhaps we need to be even more clever. A careful
examination of the barrier may even indicate how to proceed.

The second barrier concerns the idea of treating a Boolean formula as an arithmetic
expression—an idea that proved fruitful in establishing results about interactive proofs.

These results proved statements that are known to have contrary relativization just like P
?
=

NP. Furthermore, circuit lower bounds were discovered that avoid both the relativization
barrier and the natural proofs barrier, so it was natural to wonder whether the same
techniques could be adapted to resolve P vs. NP, or at least some other important open
questions. In 2008 Aaronson and Wigderson introduced the algebrization barrier precisely
to quantify the usefulness of this method. They established that resolving P vs. NP, as well
as many other potentially easier open problems, will require non-algebrizing techniques.

The structure of the essay is as follows. There are three main sections: 1) Natural
Proofs, 2) Algebrization, and 3) Circumventing the Barriers. In the third section, we
briefly explore Ryan Williams’s recently proposed research program for proving circuit
lower bounds via slightly faster algorithms for NP problems.

1



1 Natural Proofs

The work of Razborov and Rudich examines the common characteristics of (non-monotone)
circuit lower bound proofs and identifies a framework that they all share. We will not
be concerned with results about monotone circuit here. Formally, they define a natural
property and argue that every known circuit lower bound proof identifies such a property.
Their main message is that proving a much stronger lower bound with the same strategy
would identify a stronger natural property, one that could be used to break a pseudorandom
generator. Since the existence of pseudorandom generators is a plausible conjecture, it is
doubtful that we can use the common framework of all known lower bound proofs to prove
a stronger lower bound.

In order to appreciate the significance of their result, it is essential to understand the
proofs of some circuit lower bounds. We begin by examining one of the first lower bounds
proved and analyze the proof to motivate the definition of a natural property. Then we
introduce the notions of a pseudorandom generator and show how to construct from it
a pseudorandom function generator. Technically speaking, Razborov and Rudich prove
that a strong enough natural property contradicts the security of a pseudorandom function
generator constructed from a pseudorandom generator, which contradicts the security of a
generator itself. Finally, we explore one other circuit lower bound to illustrate the method
for determining that a lower bound proof indeed identifies a natural property.

The first lower bound we will explore is Parity /∈ AC0. Initially, researchers focused on
proving lower bounds for simple functions and very limited models of circuits. The hope
was to gradually increase the intricacy of the function while dropping certain restrictions
to the circuit models. This early result of Furst, Saxe, and Sipser [FSS] (and independently
of Ajtai [Ajt]) says that the parity function of summing the binary inputs mod 2 does not
have constant-depth polynomial size circuits with AND, OR, NOT gates of unbounded
fan-in.

1.1 Parity 6∈ AC0

Although this proof will be a lot of hard work, it will serve as a good example of the types
of arguments used in the field. Here we follow the original proof of [FSS], even though
more refined proofs were given by Yao [Yao1], and later by Hastad [Has1] using Hastad
switching. Actually, from the perspective of natural proofs the proofs are arguably “the
same”. We begin with some definitions.

Definition 1. The class NCi is the class of languages that are decided by polynomial size
circuits of depth O(logi(n)) with AND, OR gates of fan-in 2 and NOT gates. Here n is the
number of bits in the binary input. The class ACi is defined analogously except that the
gates are allowed unbounded fan-in. A circuit family {Cn} is an NCi(ACi) circuit family if
Cn is of the respective form for every n.
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Any unbounded fan-in gate with polynomially many inputs can be simulated using a
depth O(log n) tree of fan-in 2 gates, so we have the trivial string of inclusions,

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ AC2 ⊆ · · · .

When talking about circuits we will refer to the “top” as the level of the inputs and the
“bottom” as the level of the output. This standard varies in the literature.

Definition 2. Let Parity be the family of Boolean functions{
fn(x1, . . . , xn) =

n∑
i=0

xi mod 2

∣∣∣∣∣ n ∈ N

}
.

One can also view Parity as a language such that a Boolean string x1 · · ·xn = x ∈ Parity if
and only if fn(x1, . . . , xn) = 1.

We would like to show that Parity /∈ AC0. First, observe that an AC0 circuit can be
converted into the following form: 1) all NOT gates occur at the top, and 2) the levels of
the circuits alternate between only AND gates and only OR gates. The resulting circuit
is still polynomial size because the conversion consists of pushing negations to the top
using DeMorgan’s laws and mostly adding trivial AND and OR gates. Therefore, for the
purposes of proving a lower bound we may assume that AC0 circuit families are of this form.
In fact, ACi stands for alternating class, and this alternation property allows us to give a
recursive definition for such circuits.

Definition 3 ( [FSS]). For every n letXn = {x1, . . . , xn} be variables andXn = {x1, x̄1, x2, x̄2, . . . , xn, x̄n}
be literals (x̄i represents the negation of xi). Define a 0-circuit to be a literal, which can be
thought of as computing a projection function f(x1, . . . , xn) = xj or the negation of such
a function.

Recursively define an i-circuit to be a non-empty collection of i − 1-circuits without
repetition, which we call the members of the i-circuit. If i is odd then an i-circuit is an
∨-circuit and computes the ∨(OR) function of the functions computed by its members. If i
is even then an i-circuit is an ∧-circuit and computes the ∧(AND) function of the functions
computed by its members. Denote by Cf the function that the circuit C computes. There
are two constant circuits 0 and 1 that compute the constant functions.

Therefore, an i-circuit in some larger circuit C of depth d > i can be thought of as a
subcircuit of C. We will sometimes refer to these subcircuits as gates, but the recursive
definition should be kept in mind. A circuit by this definition always has the first level
consisting of ∨-circuits with literals as inputs, and the second level consisting of ∧-circuits
with inputs the ∨-circuits of the first level. It is implied that the collection of members of
any i-circuit is at most polynomial because we will be considering circuits of polynomial
size.
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Definition 4. The depth of an i-circuit is i. The size of a circuit C is the number of
circuits belonging to C where belonging to is the transitive closure of the member relation.
In other words, the size of a circuit C is the number of its members plus the sum of the
number of their members and so forth until depth-0 circuits are reached.

The key ingredient to the proof will be to consider what happens to the circuit and the
function it computes when some of the variables are set to constants.

Definition 5. A restriction to the input variables is a function ρ : Xn → {0, 1, ∗}, which
can be extended to all of Xn by

ρ(xj) =

{
1− ρ(xj) if ρ(xj) = 0 or 1,

ρ(xj) = ∗ otherwise.

Here ∗ represents that the variable remains a free variable. For a Boolean function
f : {0, 1}n → {0, 1} and restrictions ρ that assigns k ∗’s, we have the restricted Boolean
function fρ(x1, . . . , xn) = f(ρ(x1), . . . , ρ(xn)) : {0, 1}k → {0, 1} where the k occurrences of
∗ are replaced by the appropriate free variable.

We observe a simple yet important property of Parity.

Lemma 6. Fix an arbitrary n. If fn computes Parity on n inputs, then for any restriction
ρ assigning k ∗’s, fρn computes Parity or its negation on k inputs.

Restrictions can also be applied to circuits in a natural way. We define recursively
that a restriction ρ forces an ∨-circuit to be 1 (0) if it forces any (all) of its mem-
bers to be 1 (0). Define the dual statement for ∧-circuits. If a circuit C is not forced,
then the forced members of C are irrelevant, so we define Cρ to be the collection {Bρ |
B is a member of C that is not forced}. We state another obvious observation.

Lemma 7. Given a restriction ρ, if a circuit C computes f then Cρ computes fρ.

Let f = {fn} be the Parity function. We will use the above two lemmas in the following
way: if a family of d-circuits {Cn} computes f = {fn}, then for any restriction ρ, Cρn
computes fρn, which is still the Parity function or its negation on some kn variables.

First note that there cannot be a family of 1-circuits that computes f because for any
n, fn depends on all of its inputs, so a single ∨ gate cannot compute fn. Not as obviously,
any family of 2-circuits that computes f must have size at least 2n−1. To see this note that
any Boolean function can be represented as an AND of ORs or an OR of ANDs, which are
the conjunctive normal form and the disjunctive normal form respectively. The function
fn has 2n−1 terms in both of these normal forms. By examining what are called max-terms
and min-terms of Boolean assignments the CNF and DNF formulae can be seen to be
optimal for Parity. This was originally proved by Lupanov in [Lup].
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We are now ready to prove the desired theorem with the following outline. To show
that for any depth d there does not exist a polynomial size family of d-circuits solving f ,
assume the contrary. Then there exists a minimal d such that there is a polynomial size
family of d-circuits computing f . By the previous paragraph d ≥ 3. We would like to
swap the first level of ∨-circuits with the second level of ∧-circuits, resulting in an initial
level of ∧-circuits followed by a level of ∨-circuits instead. Since d ≥ 3, there would be
two adjacent levels of ∨-circuits that could be merged into one single level. We can then
adjust the circuit to begin with a level of ∨-circuits again by using the distributive laws.
If this transformation is accomplished so that the resulting circuit family still computes f
and still has polynomial size, then the new circuit family contradicts the minimality of d.

In general, an OR of ANDs can always be written as an AND of ORs, but doing a few
examples reveals that the obvious use of the distributive law could produce a formula that
is exponentially larger than the one started with.

Example 8. Interpreted as a circuit, the right hand side has much greater size.

(a ∨ b ∨ c) ∧ (x ∨ y ∨ z) =

(a ∧ x) ∨ (a ∧ y) ∨ (a ∧ z) ∨ (b ∧ x) ∨ (b ∧ y) ∨ (b ∧ z) ∨ (c ∧ x) ∨ (c ∧ y) ∨ (c ∧ z)

With this method, although one level shorter, the new circuit becomes exponentially
large. To get around this issue, given a Cn computing fn, we apply a restriction to the
inputs that forces enough, but not too many, subcircuits to become constant, so that the
size of the new circuit does not increase too much, yet the entire circuit is not forced. By
the two lemmas, the resulting circuit computes f on some fewer number of inputs that are
the free variables of the restriction. These circuits can be used to create a new polynomial
size family of circuits computing f . The existence of a restriction that forces just the right
number of subcircuits constant will be established by the probabilistic method: we define
a distribution and show that an appropriate restriction exists with positive probability.

Theorem 9 ( [FSS]). Parity /∈ AC0.

Proof. Let f denote the Parity function. To get a contradiction assume that f does indeed
have AC0 circuits. Then there exists a smallest constant d such that there exists a family of
d-circuits {Cn} with the size of each Cn ≤ nk for some constant k not depending on n. As
mentioned before, d ≥ 3. We use {Cn} to obtain a polynomial size family of d− 1-circuits
that also compute f , contradicting the minimality of d.

The proof has three steps. 1) Show that there exists a restriction such that the 1-circuits
of Cn have constant size. From these circuits we form a polynomial size family {Dn} with
constant size 1-circuits computing f . 2) Show that there is a restriction such that the
2-circuits of Dn have constant size. From these we form a polynomial size family {En}
with constant size 2-circuits computing f . 3) Flip the 1-circuits and 2-circuits of En using
the trivial method, which can only increase the size by a constant factor. Merge adjacent
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∨-circuits, and DeMorgan the circuit back to standard form to create a final polynomial
size family {Fn} of d− 1-circuits computing f .

We will show that for every large enough n there exists with positive probability a
restriction ρ such that

• Cρn computes f on m ≥
√
n
2 variables and

• the size of any 1-circuit of Cρn is bounded by a constant independent of n.

Define the distribution on restrictions ρ : Xn → {0, 1, ∗} that assigns independently for
each i the probabilities

• Pr[ρ(xi) = ∗] = 1√
n

• Pr[ρ(xi) = 0] =Pr[ρ(xi) = 1] = 1
2 −

1
2
√
n

.

Denote by ρ fails the event that ρ assigns less than
√
n
2 variables to ∗ or the size of some

1-circuit is greater than the constant c, which will be selected later to achieve our desired
result. Therefore, a crude upper bound is

Pr[ρ fails] ≤ Pr[ρ assigns <

√
n

2
∗′ s] + nk · Pr[a given 1-circuit in Cρn has size > c].

Using Chebyshev’s inequality, we can bound the first term by O( 1√
n

). For the second term

take any 1-circuit B of Cn and consider Bρ. There are two cases: B is wide, meaning that
it has ≥ c lnn inputs, or B is narrow, meaning that it has < c lnn inputs.

(a) B is wide. Intuitively, we can bound this case because there are enough variables so
that at least one of them will be assigned 1 with good probability. For Bρ to even
be able to have some sort of size, B must not be forced by ρ, so we have

Pr[Bρ has size > c] ≤ Pr[B is not forced]

= Pr[ no input of B is assigned to 1]

≤
(

1− 1/
√
n

2

)c lnn
≤
(

3

4

)c lnn
for say n ≥ 9

= nc ln(3/4).

This last expression is o(n−c/4) because nc/4 · nc ln(3/4) = nc·(1/4+ln(3/4)) tends to 0
because 1/4 + ln(3/4) < 0.
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(b) B is narrow. In contrast to the first case, this case can be bounded because intuitively
it corresponds to so few variables that the size is constant with high probability. We
have

Pr[Bρ has size > c] ≤ Pr[ρ assigns ≥ c ∗′ s]

=

(
cln

c

)(
1√
n

)c(1− 1/
√
n

2

)cln−c
+ · · ·+

(
cln

cln

)(
1√
n

)cln
≤ (cln)c

(
1√
n

)c(1− 1/
√
n

2

)cln−c
+ · · ·+ (cln)cln

(
1√
n

)cln
≤ (cln)c

(
1√
n

)c [(1− 1/
√
n

2

)cln−c
+ · · ·+ (cln)cln−c

(
1√
n

)cln−c]

≤
(
c lnn

c

)(
1√
n

)c
for large enough n

≤ (c lnn)cn−c/2,

where we have used a common bound on the binomial coefficient. Observe that
(c lnn)cn−c/2 = o(n−c/4) because (c lnn)cn−c/2nc/4 = cc lnn

nc/4
tends to 0.

Combining (a) and (b) gives Pr[a given 1-circuit in Cρn has size > c] ≤ o(n−c/4). Setting
c = 4k, where recall that k is the power of the polynomial representing the size of the
circuit family, gives o(n−c/4) = o(n−k). Therefore,

Pr[ρ fails] ≤ Pr[ρ assigns <

√
n

2
∗′ s] + nk · Pr[a given 1-circuit in Cρn has size > c]

≤ O(n−1/2) + nk · o(n−k)
= o(1).

Once n is large enough this probability is bounded strictly away from 1, so that for every
n large enough there exists a ρ that does not fail.

For such an n and restriction ρ the resulting circuit Cρn computes f on m ≥
√
n/2

variables, has constant size 1-circuits, and has size at most nk, which is still polynomial
in m ≥

√
n/2. (If Cρn initially computes ¬f , adjust with a NOT gate and propagate the

NOT to the input level.) From these circuits we construct a family of polynomial size d-
circuits D1, D2, . . . such that each 1-circuit has constant size c. Although the initial family
of restricted circuits Cρn may not hit every input size, we can adjust by assigning 0’s to
an appropriate number of inputs in some Cρn for large enough n to get the desired Di for
every i.

Now we reason similarly to show that there exist restrictions to Dn that make the
2-circuits constant size. Consider the same distribution on restrictions ρ as above. We will
show that for every large enough n a restriction chosen according to the distribution has a
positive probability that
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• Dρ
n computes f on m ≥

√
n/2 inputs and

• the size of any 2-circuit of Dρ
n is bounded by a constant independent of n (but may

depend on c, the constant chosen in the first part).

In this case, we say that ρ fails if ρ assigns fewer than
√
n/2 ∗’s or some 2-circuit Bρ

depends on ≥ bc inputs, where bc will be a constant that we will specify later to fit our
needs. Note that we are counting the number of inputs that Bρ depends on and not it’s size
because if a 2-circuit depends on bc inputs then it’s size can be at most bc · 2bc . Therefore,
a constant bound on the number of inputs Bρ depends on is sufficient to give a constant
bound on its size.

As in the first part, the probability of the former happening is bounded by O(n−1/2).
For the second part we prove by induction that

Claim 10. For every constant c there exists a constant bc such that if B is a 2-circuit with
1-circuits of size ≤ c then Pr[Bρ depends on ≥ bc inputs] ≤ o(n−k).

Base case: For c = 1 we have that every 1-circuit that is a member of B has only one
input, so all of the 1-circuits are unnecessary. Therefore, we can view B as the ∧ of the
inputs to the 1-circuits rather than the 1-circuits. Now we can argue dually to the first
part of the proof to establish the existence of b1, i.e. the only reasoning that changes is in
the wide case where now B is not forced if and only if no input of B is assigned a 0.

Inductive step: Assume that bc−1 exists. Call two 1-circuits disjoint if they have no
common inputs. Let b = 2k · 4c. Again, consider a wide case where B has ≥ b lnn disjoint
1-circuits and a narrow case with < b lnn disjoint 1-circuits. The constant b was chosen
as a convenient delineation of “wide” versus “narrow” so that the bounds in the wide case
work out as desired.

(a) B is wide. As before in this case, we show that the probability that a member of B
is not forced is small.

Pr[B is not forced] = Pr[none of B’s 1-circuits are forced to 0]

≤ Pr[1-circuit of size c not forced to 0]|{B’s members}|

≤ Pr[1-circuit of size c not forced to 0]b lnn

≤
[
1−

(
1− 1/

√
n

2

)c]b lnn
≤
(

1− 1

4c

)b lnn
for n ≥ 4

= nb ln(1−4
−c)

≤ n−b(4−c)

= o(n−k).
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(b) B is narrow. Let {Ai} be the 1-circuit members of B. Consider a maximal collection
B of disjoint Ai i.e. adding any other Aj to B implies that some two 1-circuits in B
share at least one common input. Let H be the set of inputs occurring in B. We
have that | H |< c · b lnn because B is narrow and each A ∈ B has size at most c.
Note that for every i, Ai has at least one input variable that is in H because if it did
not then Ai could be added to our collection B, contradicting its maximality. Say
that H hits every member of B.

Now consider Bρ for some restriction ρ and let h be the set of variables in H that
are assigned ∗. Let ρ1, ρ2, . . . , ρ2h be the 2h restrictions obtained by “extending” ρ
so that every variable in h is assigned a 0 or a 1, i.e. ρ1 assigns all of the variables in
h to 0’s, ρ2 assigns all but one of the variables in h to 0’s, and so on. Note that for
each ρi the only ∗’ed inputs to members of Bρi may occur outside of H, that is in a
member of B not in B.

Therefore, Bρ depends on the inputs h, as well as some more inputs in each Bρi . We
would like to bound the probability that Bρ depends on > 4k + 2h · bc−1 inputs.

We claim that each member of Bρi has size ≤ c − 1. This is the case because H
hits every member of B: given a member A of B

• if the original restriction ρ assigns a 1 or a 0 to any of the inputs of A, then A
has size ≤ c− 1.

• Otherwise, ρ assigned all ∗’s to the inputs of A. But since H hits every A, there
is at least one variable in h that is an input of A. Therefore, ρi sets this input
to a 1 or a 0, reducing the size of A to ≤ c− 1.

Now by the inductive hypothesis conclude that for every i

Pr[Bρi depends on > bc−1 inputs] < o(n−k). (1)

When does Bρ depend on more than 4k + 2h · bc−1 inputs? This occurs if | h |> 4k
or for some i, Bρi > bc−1. Bound the probability that | h |> 4k by a similar method
as before:

Pr[ρ assigns ≥ 4k ∗ ’s to H] ≤
(
cb lnn

4k

)(
1√
n

)4k

(2)

≤ (cb lnn)4kn−2k (3)

= (c2k4c lnn)4kn−2k (4)

= o(n−k). (5)
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Since 2h ≤ 24k whenever h ≤ 4k, we can set bc = 4k + 24k · bc−1. Combining (1) and
(5) we have that

Pr[Bρ depends on < bc inputs] ≤ Pr[| h |> 4k] + 2h · Pr[Bρi depends on > bc−1 inputs]

≤ o(n−k) + 24ko(n−k)

= o(n−k).

Thus, we have proved the claim and can conclude that for large enough n there exists
a ρ that does not fail. Given a circuit Dn from our previous family, if n is large enough,
there exists a restriction ρ such that Dρ

n computes f on at least m ≥
√
n/2 inputs and has

constant sized 2-circuits. As before, we can make a polynomial size family E1, E2, . . . that
computes f such that each Ei has constant size 2-circuits.

Finally, modify each En by switching every 2-circuit that is an ∧ of ∨’s to a circuit that
is an ∨ of ∧’s using the distributive law. The size of the resulting circuit increases by at
most a constant factor. Now there are two adjacent levels of ∨-circuits because d ≥ 3, which
are merged together. We have a circuit with a first level consisting of ∧-circuits, so we use
DeMorgan’s laws to exchange the ∧ and ∨ levels to obtain a d − 1-circuit of appropriate
form that computes f . The resulting family is still polynomial size, contradicting the
minimality of d.

An exponential lower bound was later proved by Yao [Yao1]. Then Hastad identified the
main idea of these proofs, now called Hastad switching, to give an optimal bound [Has1].
Hastad switching is an important concept in its own right, but the proofs of these tighter
bounds still rely on the crucial property that an AC0 circuit can be put into an alternating
form. Although the proof just given appears to rely on technical details, and a non-
constructive existence argument to derive a contradiction, we will see that it adheres to
the Razborov, Rudich general framework.

1.2 Natural Property

By examining lower bound proofs such as the one proved above, Razborov and Rudich
[RR] discovered a common characteristic: the proofs all identify a property of a candidate
Boolean function and show that circuits of a given complexity class could not possibly
decide a function with this property. Therefore, the proofs do not rely on all of the details
concerning the candidate function, but rather on the details of a function property that
many other Boolean functions might have as well. Even more surprisingly, in every lower
bound proof thus far, the property also satisfies two criteria, and they call a property
satisfying this criteria a natural property. Following [RR], we give the definitions and
argue that the AC0 proof fits their framework.

Let Fn denote the set of all Boolean functions f : {0, 1}n → {0, 1}. A function f :
{0, 1}n → {0, 1} is completely specified by its truth table, a 2n long string such that the
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ith bit represents the value f takes on the ith lexicographic string in {0, 1}n. From this
specification note that | Fn |= 22

n
. If we provide as input to an algorithm a Boolean

function f then we can imagine the input encoded as a truth table, so that the input has
size 2n.

Definition 11 ( [RR]). A collection of subsets {Cn | Cn ⊆ Fn}n∈N is a property of
functions. The property {Cn} is useful against P/Poly if the following holds.

(a) Let f1, f2, . . . be a sequence of functions such that fn ∈ Cn. Then for every k there
exists an N such that for every n > N , fn cannot be computed by circuits of size nk.

A property of functions is a natural property if there exists a collection of subsets
{C∗n | C∗n ⊆ Cn} such that

(b) given some f : {0, 1}n → {0, 1} there exists an algorithm running in poly(2n) = 2O(n)

time that decides whether or not f ∈ C∗n, and

(c) there exists a constant c such that |C
∗
n|
|Fn| ≥

1
2cn for every large enough n.

More generally, if the algorithm in (b) for deciding the predicate f ∈ C∗ is in complexity
class Γ, then we say that Cn is Γ-natural. Furthermore, for a complexity class Λ if instead
of (a) we have that for any sequence f1, f2, . . . with fn ∈ Cn that f1, f2, . . . = f /∈ Λ, then
Cn is useful against Λ.

Criterion (a) gives a way for showing that a function has superpolynomial circuit com-
plexity. If (a) holds for some property {Cn}, then for any family of Boolean functions
f = f1, f2, . . . such that each fn has property Cn, f /∈ P/Poly. Hence, Cn is useful against
P/Poly because if we can succeed in identifying a family of Boolean functions each of which
has the useful property then we have identified a family with superpolynomial circuit com-
plexity.

Criterion (b) says that there exists a polynomial size circuit that given a Boolean
function in the form of a truth table decides whether f has the property C∗n, i.e. deciding
the predicate f ∈ Cn is in P/Poly. If (b) holds we say that Cn has constructvity. In
other words, if a useful property {Cn} is natural, then it comes with an efficient built in
algorithm.

The next requirement (c) says that | C∗n |≥ 22
n

2cn = 22
n−cn, which says that the subsets

C∗n are large. Alternatively, it is convenient to interpret this as saying that a randomly
chosen function f ∈ Fn has a non-negligible probability of having property C∗n. If (c) holds
we say that Cn has largeness. The necessity of the distinction between Cn and C∗n will
become evident when we examine a second lower bound.

Up until this point the definitions given have been entirely rigorous. More loosely, we
say that a lower bound proof is P/Poly-natural against P/Poly if it identifies a P/Poly-natural
property useful against P/Poly. This is not an entirely rigorous statement because it is not
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always clear whether a proof explicitly defines a natural property or, if it does, whether
it is necessary in the proof at all. In particular, we will examine a natural proof where it
is a non-trivial task to identify {C∗n}. However, with practice and enough experience one
can usually tell when a proof is “natural”. On the other hand, it is difficult to see which
potential arguments may withstand “being naturalized”, other than by trying some choices
of {C∗n} to see if they fail.

Razborov and Rudich claim that all circuit lower bound proofs have gone according to
the following scheme (?):

• identify some property of a problem f ,

• show that any function with this property cannot be computed by circuits from the
class Γ,

• thereby conclude that f /∈ Γ.

Is this the case for our proof that Parity /∈ AC0? It may seem that our proof was specific
to the Parity function, but in reality we worked exclusively with the circuit model after we
established a basic fact about Parity. Recall that the main property of Parity = {fn} that

we utilized in the proof is that, for each fn and any ρ leaving at least
√
n
2 free variables, fρn

does not become the constant function, i.e. is not trivialized. Let {Cn} be this property.
It was not at all straight forward to show that {Cn} is useful against AC0, but despite all
of the details, {Cn} allows us to reuse the restricted circuit associated to fρn to construct a
new family of circuits. By exploiting the alternating properties of AC0 we eventually obtain
a contradiction. Thus, the proof given above is precisely the proof that the property {Cn}
is useful against AC0 because it shows that for a sequence f = f1, f2, . . . such that fi ∈ Ci
for all i, f /∈ AC0.

The claim that a lower bound result uses the scheme (?) can be viewed as generalizing
the result to any function that has the property {Cn} useful against AC0. In fact, Furst,
Saxe, and Sipser realized this (perhaps not as generally as Razborov and Rudich) by
providing a corollary to their main result of Parity /∈ AC0.

Corollary 12. Given any p ≥ 2 and a < p the Boolean function

f(x) =

{
1 if

∑n
i=0 xi ≡ a mod p

0 otherwise.

is not in AC0.

In contrast to our proof by contradiction, the subsequent proof given by Hastad in [Has1]
establishes the usefulness of {Cn} against AC0 more directly. Using Hastad switching it can
be shown by the probabilistic method that any AC0 circuit has a restriction ρ that trivializes
the circuit, so it could not have possibly decided a function for which no such trivializing
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ρ exists. See [AB, Chp 14], [Has1], [Has2] for this proof. The argument focuses even
closer on the alternating properties of AC0 and quantifies more precisely the probabilities
of commuting a row of ORs with a row of ANDs under random restrictions. Thus, the
essence of the proofs is the same, except that the stronger proofs reveal the useful property
more directly. We gave the historically earlier proof to emphasize that at first it may not
be obvious that the argument adheres to this framework

Not surprisingly, demonstrating the usefulness of a property {Cn} against a complexity
class Γ has more to do with studying the properties of Γ rather than the candidate function.
Proving naturality, on the other hand, deals with the functions rather than the complexity
class. In examining the definition of a natural property useful against P/Poly we see that
the scheme (?) only uses condition (a): we only need the usefulness against some circuit
class Γ for the scheme to succeed in proving a lower bound, and could care less about any
other conditions that the property may satisfy. Razborov and Rudich’s main insight is
that all lower bound proofs not only use (?), but in doing so identify a property that is
also natural, i.e. the useful property also has conditions (b) and (c), which turn out to be
very important in relation to pseudorandom generators.

This leaves the question of whether the property that we used in our proof is natural.
To show this we need to identify a collection of subsets {C∗n ⊆ Cn}. In this case, setting
C∗n = Cn suffices. To see constructivity consider the following circuit D that takes as input

a truth table for a function fn and decides fn
?
∈ Cn. There are

(
n√
n/2

)
· 2n−

√
n/2 = 2O(n)

restrictions that leave
√
n/2 free variables. Fix a restriction ρ. We construct a subcircuit

Eρ that is true if and only if fρn is nontrivial. The truth table of fρn consists of 2
√
n/2 bits

of the 2n long truth table of fn. Take the appropriate inputs z1, . . . , z2
√
n/2 from the inputs

to D and wire them into Eρ. Then let Eρ be the OR of zi ⊕ zj for every i 6= j (where ⊕ is

exclusive-or). There are
(
2
√
n/2

2

)
= poly(2n) pairs, so the size of Eρ is polynomial in 2n and

the depth is 3. Let D output the AND of all of the Eρ’s. Since there are poly(2n) ρ’s, all
of D has size poly(2n) and depth 4, so deciding the predicate fn ∈ C∗n is in AC0.

To see largeness intuitively, let f be a random function. Then a restriction ρ that
leaves some variables free when applied to f produces a random function, but there are
only two constant functions. More formally, let ρ be a restriction that leaves m =

√
n/2

free variables. Consider how many functions fn this ρ can trivialize. The truth table
of fρn consists of 2m bits all of which would have to be equal. The remaining 2n − 2m

bits of the original truth table of fn could have been anything. Therefore, a single ρ
can trivialize 2 · (2n − 2m) function fn. Since there are

(
n
m

)
2n−m restrictions ρ, there are(

n
m

)
2n−m · 2 · (2n − 2m) functions that are trivialized by some ρ. Therefore,

22
n −

(
n

m

)
2n−m · 2 · (2n − 2m) = 22

n − 2O(n)

functions fn have property C∗n. This gives |C
∗
n|
|Fn| = 22

n−2O(n)

22n
, which is certainly greater than

1
2c·n for some constant c.
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To summarize this is an AC0-natural proof against AC0. Showing the naturality of Cn
was not particularly difficult, but we will see another lower bound example where this
process is not as straight forward. This second example will be a NC2-natural proof. First
we prove the main result regarding pseudorandom generators.

1.3 Pseudorandom Generators

Razborov and Rudich’s main result is that a natural property against P/poly contradicts
the existence of pseudorandom generators. It turns out that this proof relies on the ideas
in [GGM] of constructing a pseudorandom function generator from a pseudorandom gener-
ator. Therefore, we first give the construction of a pseudorandom function generator from
a pseudorandom generator following the original method of [GGM]. This proof illustrates
the main ideas necessary to establish the main result. We begin by defining pseudorandom
generators according to Blum and Micali [BM].

Definition 13 ( [BM]). A family of Boolean functions Gn : {0, 1}n → {0, 1}2n is a pseu-
dorandom generator (PRG) if for every polynomial Q(n) and any probabilistic polynomial
time algorithm A

| pA2n − pAGn |≤
1

Q(n)

for every n large enough, where pA2n is the probability that A outputs 1 when given a random
input from the uniform distribution on string of length 2n and pAGn is the probability that
A outputs 1 when given an input produced by applying Gn to a random input from the
uniform distribution on strings of length n.

A PRG can be thought of as taking a truly random string and producing a longer string
of length l(n) that is random enough to fool polynomial time probabilistic Turing machine.
The function l(n) (2n in our definition) is referred to as the stretch of G.

There is a stronger definition in relation to the non-uniform circuit model that quan-
tifies the hardness of a pseudorandom generator. This definition is usually used in the
context of hardness-randomness tradeoffs and derandomization. We will need this partic-
ular formulation in the proof of the main theorem.

Definition 14 ( [BM]). The hardness of a generator Gn : {0, 1}n → {0, 1}2n, denoted
H(Gn), is the smallest S(n) such that there exists a family {Cn} of circuits of size at most
S(n) such that

| Prx∈{0,1}n [C(Gn(x)) = 1]− Pry∈{0,1}2n [C(y) = 1] |≥ 1

S(n)
.
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Alternatively, H(Gn) can be viewed as the largest S(n) such that for all circuit families
{Cn} of circuits of size at most S(n),

| Prx∈{0,1}n [C(Gn(x)) = 1]− Pry∈{0,1}2n [C(y) = 1] |< 1

S(n)

There are many different ways to define pseudorandom generators. In these two defi-
nitions we have considered probabilistic algorithms, as well as the circuit model. Another
possible definition provides a whole set of polynomially many strings as input to the prob-
abilistic Turing machine. Yao showed in [Yao2] that this definition is equivalent with the
one we give.

Under a hardness assumption for the discrete logarithm problem Blum and Micali
showed in [BM] how to construct a pseudorandom generator. Then Goldreich, Goldwasser,
and Micali [GGM] introduced pseudorandom function generators and showed how to con-
struct them from pseudorandom generators. We follow their proof in the next section, after
providing their definitions.

Let Hn be the set of functions f : {0, 1}n → {0, 1}n so that | Hn |= 2n·2
n
, and let

H = {Hn}.

Definition 15. Let F = {Fn ⊆ Hn} be a collection of subsets of functions. Let A be a
probabilistic polynomial-time algorithm that on input 1n and access to an oracle computing
f : {0, 1}n → {0, 1}n outputs a 1 or a 0. We say that F passes test A if for every polynomial
Q(n) and every large enough n

| pFn − pHn |≤
1

Q(n)
,

where pFn denotes the probability that Af on input 1n outputs 1 for a randomly chosen
f ∈ Fn and pHn denotes the probability that Af on input 1n outputs 1 for a randomly chosen
f ∈ Hn. Note that the probabilities are taken over the random choices of the function and
the internal randomness of the algorithm A.

Intuitively, we can think of the test A as being given some function f : {0, 1}n →
{0, 1}n, being allowed to ask about polynomially many values of f (perhaps determined
probabilistically), while doing some other probabilistic computation, and finally outputting
its verdict as to whether f came from Fn or Hn.

Definition 16. We say that a collection F is a pseudorandom collection of functions if it
passes all probabilistic polynomial-time tests.

We would like to be able to construct the functions in a pseudorandom collection
efficiently and for the functions to be themselves efficiently computable. In particular, let
each function in Fn be indexed by a n-bit string x, so we can denote each function as fx
for some x ∈ {0, 1}n.
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Definition 17 ( [GGM]). Let F be a pseudorandom collection. A pseudorandom function
generator is a polynomial time algorithm that on input x ∈ {0, 1}n, y ∈ {0, 1}n outputs
fx(y) for an fx ∈ Fn.

We show that such a construction is possible assuming the existence of a pseudorandom
generator of stretch 2n.

1.3.1 Construction of Pseudorandom Function Generator

Let Gn : {0, 1}n → {0, 1}2n be a pseudorandom generator. We can think of n as fixed and
suppress the indexing. Let G0, G1 : {0, 1}n → {0, 1}n be the “first-half” and “second-half”
functions such that if G(x) = y1 · · · ynyn+1 · · · y2n then G0(x) = y1 · · · yn and G1(x) =
yn+1 · · · y2n. Consider an n-bit string b = bn · · · b1. Define

Gb(x) = Gbn(Gbn−1(· · · (Gb1(x)) · · · )).

Let fx(b) = Gb(x). See figure 1 for an intuitive understanding of this construction.

Figure 1: Tree representing the pseudorandom collection of functions as in [GGM]

In the tree diagram, one may think of x as an input token and the string b as the trail
one needs to follow to reach the correct leaf that holds the output value. The roles of x
and b are such that we view the token x as the seed in our random function generator
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and we view the trail b as the input to the function. In particular, for any x, b ∈ {0, 1}n
fx(b) = Gb(x) is computable in n · p(n) time if G is computable in p(n) time. Thus, if
the subsets {fx}x∈{0,1}n = Fn form a pseudorandom collection, we have a pseudorandom
function generator.

Theorem 18 ( [GGM]). Assuming that G is a pseudorandom generator, the collection
Fn = {fx | x ∈ {0, 1}n} constructed above is a pseudorandom collection.

Proof. The proof is by contradiction. Suppose that there exists a probabilistic polynomial-
time algorithm T and a polynomial p(n) such that

| pFn − pHn |>
1

p(n)

for infinitely many n. Here pFn is the probability T outputs 1 on input 1n given an oracle
computing a randomly selected fx ∈ Fn, and pHn is the probability T outputs 1 on input 1n

given an oracle computing a randomly selected f ∈ Hn. Using this distinguisher algorithm
for functions we will create a distinguishing algorithm for distributions. The algorithm AT
will distinguish the uniform distribution on strings of length 2n from the distribution on
strings of length 2n created by G, thereby contradicting G’s pseudorandomness. Let Q(n)
be the polynomially many queries that T makes on input 1n. Consider T ’s computation
when its queries are answered by the probabilistic algorithms Mi defined bellow.
Mi answers one of T ’s queries y = y1y2 · · · yn according to the following procedure:

• if y is the first occurrence with an initial segment of y1y2 · · · yi
then randomly select an r ∈ {0, 1}n, store the tuple (y1, . . . , yi, r), and output
Gyn···yi+1(r).

• else look up (y1, . . . , yi, r) and output Gyn···yi+1(r).

Extend the meaning of Gy to Gy(r) = r when y is the empty string, so that Mn is well-
defined. We can imagine the Mi’s as starting their computation of Gy a little late by filling
in the ith level of the tree in the diagram with random values and proceeding from there.
The i determines the different levels of lateness. The purpose of the definition becomes
clear when considering M0 and Mn. In particular, M0 when queried by y = y1 · · · yn returns
Gy(r) for a random r, but this is precisely fr(y) for a random r, i.e. a function from our
collection {fx | x ∈ {0, 1}n} chosen at random. On the other hand, Mn when queried on y
chooses a random string r ∈ {0, 1}n and outputs r. The machine Mn answers queries as a
random function uniformly selected from Hn.

Let pin be the probability that T outputs a 1 on input 1n with Mi answering its queries.
In particular, p0n = pFn and pnn = pHn as we just reasoned. The probabilistic polynomial-time
algorithm AT is defined as follows. AT is given a set Sn of Q(n) strings each of length 2n
(recall T makes Q(n) queries on input 1n). On input 〈1n, Sn〉, AT does the following:
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(a) chooses uniformly at random a value i ∈ {0, . . . , n− 1},

(b) gives T the input 1n and responds to T ’s queries as follows:
on query y = y1 · · · yn

• if y is the first occurrence with an initial segment of y1y2 · · · yi
thenAT picks the next s0s1 = s ∈ Sn, stores the tuples (y1, . . . , yi, 0, s0), (y1, . . . , yi, 1, s1)
and outputs Gyn···yi+2(s0) if yi+1 = 0 or outputs Gyn···yi+2(s1) if yi+1 = 1,

• else AT looks up (y1, . . . , yi, yi+1, u) and returns Gyi+2(u).

The key observation is that if Sn is a set of strings selected randomly from the uniform
distribution on strings of length 2n then AT simulates T with responses given by Mi+1. On
the other hand, if Sn is a set of strings generated by G then AT simulated T with responses
given by Mi. To see this note that if AT randomly selects i then it is filling in the tree
at level i + 1 with pairs of strings obtained by breaking up a string s of length 2n. If s
is randomly selected according to the uniform distribution then both s0, s1 are uniformly
random, so the i+ 1th level will be assigned uniformly randomly. On the other hand, if s
is generated by G then the i+ 1th level will be filled in with pairs s0 = G0(r), s1 = G1(r)
where r was chosen uniformly from {0, 1}n, but this is the same as if we filled in the ith
level with uniformly chosen r’s.

Therefore,

• If the set Sn is a randomly selected subset of the length 2n strings generated by G
then the probability AT outputs 1 is

n−1∑
i=0

1

n
· pin.

• If the set Sn is a randomly selected subset of all strings of length 2n then the proba-
bility AT outputs 1 is

n−1∑
i=0

1

n
· pi+1
n .

The difference in these probabilities is

1

n
| p0n − pnn |=

1

n
| pFn − pHn |>

1

np(n)

for infinitely many n. Therefore, the output of AT non-negligibly differs for infinitely many
n when given a subset of the uniform distribution as opposed to a subset of the distribution
created by G.

The ideas of this proof will play a key role in the next section.
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1.4 Main Result

The proof that a P/poly-natural property useful against P/poly contradicts the existence of
pseudorandom generators is very similar to the proof just given. In particular, an almost
identical pseudorandom function generator is constructed. The natural property is then
used as a test to distinguish between these functions and truly random functions. Using
similar ideas to the previous proof, this distinguisher of distributions on functions is used
to distinguish distributions on strings. Recall the definition of the hardness of a generator.

Definition 19. The hardness of a generator Gn : {0, 1}n → {0, 1}2n denoted H(Gn) is
the smallest S(n) such that there exists a family {Cn} of circuits of size at most S(n) such
that

| Prx∈{0,1}n [C(Gn(x)) = 1]− Pry∈{0,1}2n [C(y) = 1] |≥ 1

S(n)

It is a widely believed conjecture that there exist generators of hardness 2n
ε

for some
fixed constant ε. This would be impossible if there exists a P/poly-natural proof against
P/poly.

Theorem 20. [RR] If there is a lower bound proof that is P/Poly natural against P/Poly

then for every generator Gn : {0, 1}n → {0, 1}2n, H(Gn) ≤ 2n
o(1)

.

Proof. To get a contradiction suppose that there is such a proof that identifies a natural
property Ck and C∗k ⊆ Ck is the subset having largeness and constructivity. Without loss
of generality we may assume that Ck = C∗k to begin with. Recall the definition:

• Constructivity: Deciding f ∈ Ck can be done in P/Poly, so we can abuse notation to
have Ck also denote a polynomial size circuit deciding membership in the subset Ck
given the truth table of a Boolean function on k inputs.

• Largeness: At least a 1
2ck

= 1
2O(k) fraction of all functions on k inputs have property

Ck for some constant c and large enough k. Or in the alternative interpretation, Ck
accepts at least 1

2ck
inputs out of all possible Boolean functions on k inputs.

Let Gn : {0, 1}n → {0, 1}2n be a pseudorandom generator. We will use Ck to construct
an algorithm that distinguishes between the strings produced by Gn and all strings uni-
formly distributed. Ultimately, we would like to prove that for any ε > 0 there exists a
distinguisher Dn of size at most Sn = 2O(nε) such that for infinitely many n

| Prx∈{0,1}n [Dn(Gn(x)) = 1]− Pry∈{0,1}2n [Dn(y)] |> 1/2O(nε).

In other words, for every ε circuits of size 2O(nε) are already big enough to tell apart the
outputs of the generator from truly random strings with nontrivial probability. Therefore
the hardness of the generator is at most 2O(nε) for every ε, implying H(Gn) ≤ 2n

o(1)
.
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Since Ck is a property of functions and not strings, we first show that Ck can be used to
distinguish functions that are constructed from Gn from all functions uniformly distributed.

Let ε > 0 and fix k = bnεc. Define the pseudorandom function generator
x ∈ {0, 1}n 7→ fx ∈ Fk where fx : {0, 1}k → {0, 1} such that on any input y ∈ {0, 1}k

fx(y) = the first bit of Gyk(· · · (Gy2(Gy1(x))) · · · ).

This is exactly as our previous construction except that the seeds are length n, the inputs
are length k = nε, and the output is just the first bit. Therefore, instead of a full binary
tree of depth n as in figure 1, we have a full binary tree of depth k. For any x ∈ {0, 1}n,
y ∈ {0, 1}k fx(y) can be computed in polynomial time as before. Therefore, fixing any
x, fx has polynomial size circuits. Since the natural property Ck is useful against P/Poly,

fx /∈ Ck for any x when k is large enough. Interpreting Ck as a circuit of size 2O(n), we
have that for large enough k, Ck(fx) = 0. On the other hand, by largeness Ck(f) = 1 for
at least 1

2ck
Boolean functions f on k inputs for large enough k. This gives us a statistical

test: there exists K such that for all k > K

| Prf :{0,1}k→{0,1}[Ck(f) = 1]− Pr
x∈{0,1}k1/ε [Ck(fx) = 1] |> 1

2O(k)
(6)

Note that in contrast to the formulation in the previous proof, where the statistical tests
were Turing machines given oracle access to functions, this formulation consists of statistical
tests that are circuits provided with the entire truth table of a function as input.

We would like to use the family Ck to construct a family of circuits Dn that distinguishes
the distribution of strings. We cannot use the same exact strategy as in the previous proof
because there we were allowed to construct a probabilistic algorithm. However, we may
do something similar to defining Mi’s, algorithms that fill in level i of the binary tree with
random strings and begin computing Gy from there. In this case however, we do not fill in
all levels after a depth i, but rather fill in all levels after a depth i along with some nodes
in level i− 1.

Consider the full binary tree T of depth k, which has 2k+1 − 1 total nodes, 2k leaf
nodes denoted L, and 2k−1 internal (non-leaf) nodes. We number all of the internal nodes
v1, v2, . . . , v2k−1 such that vi a child of vj =⇒ i < j (See figure 2 for an example with
k = 4).

Given a subset {v1, . . . , vi}, let Ti be the union of maximal subtrees in T consisting of
the nodes {v1, . . . , vi} ∪ L. Given a leaf l ∈ L let vi(l) be the root of the maximal subtree
in Ti containing l and d(i, l) the distance from vi(l) to l. In our example, if i = 10 then for
a leaf l on the left half of the tree we have v10(l) ∈ {v9, v10} and d(10, l) = 2, while for a
leaf l′ on the right half of the tree we have v10(l

′) ∈ {v5, v6, v7, v8} and d(10, l′) = 1.
Note that a string y of length k is equivalent to a leaf node l because it specifies the

path taken to reach l. We define a set of functions Fi,n for every i ∈ {0, . . . , 2k − 1}.
Let Fi,n be the set of functions f that for each subtree in Ti, f fills in the root node
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v15

v13 v14

v9 v10 v11 v12

v1 v2 v3 v4 v5 v6 v7 v8

Figure 2: Example of tree numbering with k=4
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with a string xvi ∈ {0, 1}n, and given input y ∈ {0, 1}k corresponding to l ∈ L computes
Gyn(. . . (Gyn−d(i,l)+1(xvi(l)))) . . .). The idea is the same as before, each f ∈ Fi,n fills in the
root nodes of the subtrees up to index i with some set of strings from {0, 1}n and picks up
the computation of Gy from there.

Choosing a function fi randomly from Fi,n amounts to filling in the xvi(l) randomly.
Selecting randomly a function f ∈ F0,n is equivalent to selecting a random function
h : {0, 1}k → {0, 1}. On the other hand, selecting a random function from F2k−1,n is the
same as randomly selecting an x ∈ {0, 1}n to get fx. Under this notation 6 can be written
as

| Prf∈F0,n [Ck(f) = 1]− Prf∈F
2k−1,n

[Ck(f) = 1] |> 1

2O(k)
,

so there exists a constant α and there exists a K such that ∀k ≥ K

| Prf∈F0,n [Ck(f) = 1]− Prf∈F
2k−1,n

[Ck(f) = 1] |> 1

2αk
.

Therefore, for all k ≥ K there exists some i such that

| Prf∈Fi,n [Ck(f) = 1]− Prf∈Fi+1,n
[Ck(f) = 1] |> 1

2(α+1)(k)
.

To see this let pi,n = Prf∈Fi,n [Ck(f) = 1]. Intuitively, if we can’t tell apart any two Fi,n,
Fi+1,n with sufficient probability, then we would not have been able to tell apart F0,n and
F2k−1,n to begin with. So suppose the contrary that | pi,n − pi+1,n |≤ 1

2(α+1)k for all i
infinitely often. Then for large enough k

1

2αk
<| p0,n − p2k−1,n |

=| p0,n − p1,n + p1,n − p2,n + p2,n · · · − p2k−2,n + p2k−2,n − p2k−1,n |
≤| p0,n − p1,n | + | p1,n − p2,n | + · · ·+ | p2k−2,n − p2k−1,n |

≤ (2k − 1)
1

2(α+1)k

≤ 1

2αk
− 1

2(α+1)k
,

a contradiction.
Now consider Ti+1 and note that vi+1 is a root node of a maximal subtree in Ti+1.

Suppose that we fix the root node values xv for every root node v in Ti+1 except for vi+1.
Then this assignment is one string short of specifying a function f ∈ Fi+1,n. Let F ′i+1,n be
the new distribution that corresponds to selecting a final string xvi+1 to define a function
f ∈ Fi+1,n. The same partial assignment is also two strings short of completely specifying
a function f ∈ Fi,n i.e. the children v′ and v′′ of vi+1 do not have strings xv′ and xv′′
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assigned to them yet. Consider the new distribution F ′i,n such that choosing an f ∈ F ′i,n
corresponds to choosing these final two strings. Then we still have

| Prf∈F ′i,n [Ck(f) = 1]− Prf∈F ′i+1,n
[Ck(f) = 1] |> 1

2O(k)
.

This provides a statistical test Dn that distinguishes G(xvi+1) ∈ {0, 1}2n from xv′xv′′ ∈
{0, 1}2n. Given a string x ∈ {0, 1}2n the circuit Dn has hard wired part of the truth
table that is deducible from the assignments of the root nodes of Ti+1 other than vi+1 for
appropriate i. Given x = x0x1 it fills in the missing portion of the truth table by assigning
xv′ = x0 and xv′′ = x1 and computing the missing values, which can certainly be done in
2O(n) time. The truth table values are then fed into Ck and Dn outputs the same value as
Ck. Therefore, we have a circuit family Dn such that

| Prx∈{0,1}n [Dn(Gn(x)) = 1]− Pry∈{0,1}2n [Dn(y) = 1] |> 1

2O(k)
=

1

2O(nε)
≥ 1

| Dn |
.

Recall that epsilon was arbitrary, so the result follows.

Therefore, proving a lower bound against P/poly by identifying a natural property,
produces an algorithm that can tell apart pseudorandom generated strings from random
strings. Taking the contrapositive, if there exists a pseudorandom generator of hardness
2n

ε
for any constant ε, then there cannot be a P/poly natural proof against P/poly. This

result can be generalized to complexity classes Γ and Λ. If there exists pseudorandom
generators computable in complexity class Λ that are secure against Γ algorithms, then
there is no Γ natural proof against Λ.

1.5 Modq /∈ ACC0[p]

In this section, we examine a lower bound proof that is not obviously natural. Let Modn
be the Boolean function that outputs 0 if and only if the sum of the inputs is congruent
to 0 mod n.

Definition 21. The class ACCi[p] is the class of languages that are decided by polynomial
size circuits of depth O(logi(n)) with AND, OR, Modp gates of unbounded fan-in along
with NOT gates.

So an ACC0[p] circuit is just an AC0 circuit that is allowed gates computing Modp in
one step. Building off the work of Razborov [Raz], Smolensky [Smo] proved that the Modq
function cannot be computed by ACC0[p] circuits where q and p are distinct primes. We
give a proof of the special case where q = 2 and p = 3 following the proof given in [AB].
Note that when q = 2, Modq is just the Parity function from before.

The proof fits the Razborov, Rudich scheme for lower bounds: identify a property of
your function, and show that a function with this property cannot have ACC0[p] circuits. We
prove the following where (b) is the property identification step, and (a) is the usefulness
step.
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(a) Any ACC0[3] circuit can be “approximated” by a “low” degree polynomial over F3.

(b) Mod2 cannot be approximated by a “low” degree polynomial over F3.

A polynomial p(x1, . . . , xn) : Fn3 → F3 is said to approximate a Boolean function
f(x1, . . . , xn) : {0, 1}n → {0, 1} if it agrees with the value of f on many Boolean inputs.
We quantify “approximate” and “low” in the following lemma to prove (a).

Lemma 22. If C is a ACC0[3] circuit of depth d and size S, then for any α there is a
polynomial f over F3 of degree (2α)d such that f agree with C on at least 1− S

2α fraction
of the inputs.

Proof. The proof is by induction on the depth d. If d = 0 there are no gates other than the
inputs, so the output is just one of the input gates xi, which can be approximated by the
polynomial xi. Suppose that d > 0 and assume that for every ACC0[3] circuit C of depth
d − 1 there exists an approximating polynomial g̃ of degree at most (2α)d−1 that agrees
with C on at least 1− | C | /2α fraction of the inputs.

For every gate type we provide an arithmetic expression that either exactly evaluates to
the output of the gate or does so for a large fraction of the inputs. Each gate has as input
some wires f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) that may themselves be outputs to previous
gates.

• NOT gate: Given a not gate with input f1(x1, . . . , xn) by the inductive hypothesis we
have an approximating polynomial f̃1(x1, . . . , xn). Set the approximating polynomial
for the NOT gate to be 1− f̃1(x1, . . . , xn). Whenever f̃1(x1, . . . , xn) = f1(x1, . . . , xn),
our new approximating polynomial introduces no new error and the degree stays the
same.

• MOD3 gate: Given a MOD3 gate with inputs f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) ap-

proximate the output with the polynomial
(∑k

i=1 f̃i

)2
. By Fermat’s Little Theorem

if the sum of the f̃i’s is not divisible by 3 then the polynomial evaluates to 1 mod 3
as desired, otherwise it evaluates to 0 mod 3. So again, this step is responsible for
no new error that did not come from the f̃i’s. The resulting degree is at most double
the degree of the largest degree among the f̃i’s, so by induction the resulting degree
is 2 · (2α)d−1 ≤ (2α)d.

• OR gate: Given an OR gate with inputs f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) the obvious
attempt would be to set the approximating polynomial to 1 −

∏k
i=1(1 − f̃i). This

is the standard way to “arithmetize” the OR function, so that the output is also
Boolean. The product term acts as an indication of whether any one of the f̃i’s is 1,
in which case the expression evaluates to 1. However, this would increase the degree
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by a factor of k, which in the worst case can be as large as S, the size of the entire
circuit. The solution is to introduce some error to approximate the OR gate.

The output of the OR gate is 1 if at least one of f1(x1, . . . , xn), . . . , fk(x1, . . . , xn) is
1. Consider the fi’s as a vector f = (f1, . . . , fk). Assuming one fi = 1 then f is a
non-zero vector in Fk2. Therefore, dim(f)+dim(f⊥) = k =⇒ dim(f⊥) = k − 1, so
we have

| {v : v · f = 0 mod 2, v ∈ Fk2} |= 2k−1.

Therefore, Prv∈Fk2
[v ·f = 0] = 1

2 . A random vector v is equivalent to a random subset

Iv ⊆ {1, . . . , k} and v ·f =
∑

i∈Iv fi mod 2. So with probability 1/2 over the random
choices of subsets I ⊆ {1, . . . , k},

∑
i∈I fi 6≡ 0 mod 2. If

∑
i∈I fi 6≡ 0 mod 2 holds

then so does
∑

i∈I fi 6≡ 0 mod 3. In fact, this might happen even more often, so over
the choices of subsets I we have

∑
i∈I fi 6≡ 0 mod 3 with probability at least 1/2.

Randomly choose α such subsets I1, . . . , Iα ⊆ {1, . . . , k} and set g̃j = (
∑

i∈Ij f̃i)
2. The

reason for squaring the summations is that we can only guarantee with probability
at least 1/2 that the summation is nonzero mod 3, so

∑
i∈Ij f̃i ∈ {±1}. Squaring this

value always gives a 1, the desired Boolean value in this case. Now we arithmetize
the OR function on the g̃j ’s in the standard way to get the approximating polynomial

g̃ = 1 −
∏α
j=1(1 − g̃j). If for a fixed x every f̃i = 0 then g̃ = 0. If for a fixed x at

least one f̃i = 1 then Pr[g̃ 6= 1] =Pr[g̃j = 0∀j] ≤ 1
2α . By the probabilistic method

there exists a choice of subsets I1, . . . , Iα such that the probability that g̃ 6= 1 over
the choices x is less than or equal to 1

2α . We use these specific α subsets to construct

g̃, so that g̃ differs from OR(f̃1, . . . , f̃k) on at most 1
2α inputs.

If the degrees of the f̃i are at most (2α)d−1 then the degree of g̃ is at most α · 2 ·
(2α)d−1 = (2α)d, as desired.

• AND gate: Given an AND gate with inputs f1, . . . , fk, simply note that by DeMor-
gan’s laws AND(f1, . . . , fk) = ¬OR(¬f1, . . . ,¬fk), so we can carry out the combined
procedure of the NOT gate and the OR gate described above.

Each gate introduces an error of at most 1
2α , so the resulting approximating polynomial

does not agree with C on at most at most S
2α fraction of the inputs. Note also that

successive errors might cancel out to correct themselves, so S
2α is really the worst case total

error.

Given a circuit C by plugging in α = 1
2n

1/(2d) there exists an approximating polynomial

g̃ of degree
√
n such that g̃ agrees with C on at least 1−S/2n1/(2d)/2 fraction of the inputs.

Now we prove part (b) that says if MOD2 can be approximated by a degree
√
n polynomial
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over F3 then they agree on at most 49
50 fraction of the inputs. This will give us

1− S/2n1/(2d)/2 ≤ 49/50

=⇒ (1/50)2n
1/(2d)/2 ≤ S.

Lemma 23. If f : Fn3 → F3 is a degree
√
n polynomial over F3 that agrees with MOD2 on

the inputs G ⊆ {0, 1}n then | G |< 49
502n.

Proof. First, change the variables so that 0(FALSE) is represented by 1 mod 3 and 1(TRUE)
is represented by −1 mod 3 . This allows MOD2 to be conveniently represented by
x1x2 · · ·xn. With this change of variables a polynomial g(x1, . . . , xn) becomes a poly-
nomial g(y1, . . . , yn) with yi = 1+xi, so the degree does not change. Let f be a polynomial
of degree

√
n that agrees with MOD2 agree on G ⊆ {0, 1}n. Let g be the change of variable

polynomial so that g and MOD2 agree on a set G′ ⊆ {±1}n of equal cardinality.
Consider the set of functions h : G′ → F3 denoted FG′ . Then | FG′ |= 3|G

′|. Showing

that 3|G
′| ≤ 3

49
50

2n would imply | G |=| G′ |≤ 49
502n. Since the inputs to functions in FG′

are from {±1}, x2i = 1 for any variable. Therefore, for any function h ∈ FG′ the degree of
any individual variable is at most 1 (h is multilinear). Write any h as a linear combination
of monomials aI

∏
i∈I xi for I ⊆ {1, . . . , n}. Consider h in the form h = h1 + h2 where h2

consists of all monomials with | I |≤ n/2, i.e. the portion of h with degree ≤ n/2, and h1
with monomials of degree > n/2. Then h1 can be written as

h1 = (x1 · · ·xn)(x1 · · ·xn)
∏
i∈I

xi

= x1 · · ·xn
∏
i∈I

xi

= x1 · · ·xnh1

where h1 has degree ≤ n/2. Therefore, any h ∈ FG′ can be written as h = x1 · · ·xnh1 + h2
where both h1 and h2 have degree ≤ n/2. But x1 · · ·xn and g agree on G′, so x1 · · ·xn
can be replaced by g, so that every h can be written as gh1 + h2 with the total degree of
h ≤
√
n+ n/2. The number of multilinear functions with degree ≤

√
n+ n/2 is at most 3

raised to the number of all possible monomials, which is

√
n+n/2∑
i=0

(
n

i

)
≤ 49

50
2n

where the bound is established using usual bounds on the tail distribution of binomial
coefficients. Therefore, | FG′ |≤ 3

49
50

2n as desired.

Theorem 24. MOD2 /∈ ACC0[3].
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Proof. Let Cn be a depth d ACC0[3] circuit of size S(n) that solves MOD2. Then there exists

a degree
√
n polynomial approximating Cn that agrees with Cn on at least a 1−S/2n1/(2d)/2

fraction of the inputs. Since this polynomial is a polynomial of degree
√
n, it agrees with

MOD2 on at most a 49/50 fraction of the input. Therefore, S(n) ≥ (1/50)2n
1/(2d)/2.

1.6 Naturalizing MOD2 /∈ ACC0[3]

Razborov and Rudich claim that the proof just given is a natural proof, so we examine
their argument. Let Cn be the property such that f ∈ Cn ⇐⇒ f cannot be approximated
by a degree

√
n polynomial p over F3 such that f and p agree on more than a 49

50 fraction of
the inputs. The second lemma above shows that MOD2 has this property. The first lemma
shows that Cn is useful against ACC0[3] by plugging in α = 1

2n
1/(2d).

We would like to find a subset C∗n ⊆ Cn that has constructivity and largeness. Consider
the obvious choice of C∗n = Cn. By a counting argument, C∗n has largeness because most
Boolean functions indeed cannot be approximated well by a low degree polynomial over F3.
On the other hand, it is not known how to decide in P/Poly whether f can be approximated
by a low degree polynomial, given the truth table of f . Razborov and Rudich leave this as
an open problem of its own interest.

We would like to examine the proof of the second lemma to determine a more specific
C∗n such that constructivity holds. Recall that the actual property used in the proof is the
fact that any multilinear polynomial h can be written as x1 · · ·xnh1 +h2 where h1, h2 both
have degree less than or equal to n/2. Let C∗n ⊆ Cn be the property f ∈ C∗n ⇐⇒ every
multilinear h can be written as fh1 + h2 where f is the unique multilinear representation
of f . Note that C∗n is indeed a subset of Cn because if f ∈ C∗n then the proof of the second
lemma proceeds in exactly the same way, so that f ∈ Cn.

Now we have constructivity: Let V be the vector space of all multilinear polynomials.
Let L be the vector space of polynomials with degree less than n/2 and let H be the
complement vector space of polynomials consisting of monomials with degree greater than
n/2. Then V = L ⊕H and for n odd dim(L) = dim(H). Determining whether f ∈ C∗n is
equivalent to determining whether the map πf : L→ L⊕H composed with the projection
p : L⊕H → H is one-to-one where πf is the map l 7→ fl. In other words, given an l ∈ L,
multiply by f and see what remains in H. Therefore, if L denotes a basis for L then the
property is equivalent to the statement fL + L has full rank. Given the truth table of f
the matrix for this linear map is easily computable and determining the rank of a matrix
can be done in NC2.
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We can check that p ◦ πMOD2 is indeed one-to-one. If n = 3 then

1 7→ x1x2x3,

x1 7→ x2x3,

x2 7→ x1x3,

x3 7→ x1x2

and it is easy to see that this gives a one-to-one linear map if we fix {1, x1, x2, x3},
{x1x2, x1x3, x2x3, x1x2x3} as basis vectors of L and H respectively.

However, it is unknown whether C∗n has largeness. Therefore, although we have re-
stricted C∗n enough to be able to prove constructivity, we have lost largeness. Define a new
C∗n ⊆ Cn to be the property f ∈ C∗n ⇐⇒ dim(fL+L) ≥ (1/2 + ε)2n for some fixed ε > 0.
When ε = 1/2 this property is the same as the previous property, but now C∗n is larger for
ε < 1/2. Furthermore, for any fixed ε constructivity is preserved because f ∈ C∗n can again
be determined by calculating the rank of the matrix.

Note that C∗n ⊆ Cn still holds for a fixed ε. Let G′ be as in the proof, set {±1}\G′ = W

and w =| W |. Then in the proof we showed that 3|G
′| = 32

n−w ≤ 3
49
50

2n . In this case, not
all 2n functions h : G′ → F3 can be written as fh1 + h2, but 32

n(1/2+ε)−w still can. Then
the counting argument still applies to get a sufficient bound.

Define C∗n with ε = 1/4. Then C∗n has largeness. We claim that either f ∈ C∗n or
x1 ⊕ · · · ⊕ xn ⊕ f ∈ C∗n from which largeness follows. Note that x1 ⊕ · · · ⊕ xn ⊕ f =
x1 · · ·xnf . If dim(fL + L) ≥ 3

42n then f ∈ C∗n. Otherwise, dim(fL + L) < 3
42n, and we

show that dim(x1 · · ·xnfL + L) ≥ 3
42n. Note (f)2 = 1 implying that mulitplication by f

is an automorphism of L⊕H. Therefore,

dim
(
(x1 · · ·xnfL+ L)/L

)
= dim

(
(x1 · · ·xnL+ fL)/fL

)
≥ dim

(
(x1 · · ·xnL+ fL+ L)/(fL+ L)

)
= dim

(
(L+H)/(fL+ L)

)
≥ 1

4
2n,

so x1 ⊕ · · · ⊕ xn ⊕ f ∈ C∗n as desired. Thus, this is a NC2-natural proof against ACC0[3].
There is a general pattern in lower bound proofs that adhere to the Razborov, Rudich

framework. Firstly, proving that a property Cn is useful involves working with the specific
circuit model one is proving a lower bound against. In the ACC0 lower bound this was a
fairly easy step, requiring a not too clever arithmetization of gates. On the other hand,
this was the main step in the AC0 lower bound.

The second step then has to do with showing that a particular function does indeed
have the property Cn. The level of difficulty of this second step determines how difficult
it may be to track down a subproperty C∗n that is natural. In our first example of an AC0

lower bound, this step was the easy step. Thus, showing that this property is natural was
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straightforward. For the second lower bound this was the more subtle step. Thus, finding
a natural subproperty required a more thoughtful analysis of the proof.

The subset C∗n arose from examining closely the proof that f ∈ Cn. The analysis
determined the crucial property C∗n that establishes f ∈ C∗n ⊆ Cn, revealing that the main
idea was linear algebra and a counting argument. This is the reason for the distinction
between Cn and C∗n in Razborov and Rudich’s original definition. In particular, we had
to adjust the subproperty C∗n in both directions, first to get constructivity and then to
re-obtain largeness. Thus, naturalizing a proof requires searching for the C∗n that is not
too general to make it difficult for an algorithm to exist and not too specific so that too
few functions actually have the property.

2 Algebrization

In this section we focus on a more recent complexity barrier from [AW] called algebrization.
The main motivations for this barrier are some results regarding interactive proof protocols
that are non-relativizing. Furthermore, there are some circuit lower bounds (e.g. MAEXP 6⊆
P/poly) that are both non-relativizing and non-natural, avoiding the relativization barrier
and the natural proof barrier simultaneously. The question arose of whether the ideas that
established these results were sufficient to prove stronger lower bounds.

The main idea in these non-relativizing proofs is to transform a Boolean formula into
an arithmetic expression. We have already seen this idea in Smolensky’s proof that
MODq /∈ ACC0[p] where a circuit is approximated by a low degree polynomial. The fol-
lowing results give further evidence that this approach is worthwhile in complexity theory.
The algebrization barrier attempts to understand the extent of the technique’s power and
its limitations.

We begin by proving what was historically the first significant interactive proof result
of the early 1990s: every language in the polynomial hierarchy (PH) has an interactive
proof protocol (IP). Almost all of the necessary ideas are established in this proof to fully
characterize the power of IP as IP = PSPACE. This was a surprising result because it was
known that there exists an oracle that separates IP from coNP [FS]. Therefore, PH ⊆ IP

is non-relativizing, and since PSPACE contains all of PH, IP = PSPACE is a non-relativizing
result as well.

We then examine the main ideas of these proofs to motivate the definition of an algebraic
extension oracle and what it means for an inclusion or separation to algebrize or not.
Under these notions the interactive proof results algebrize, but many other open questions
in complexity theory do not.

2.1 PH ⊆ IP and PSPACE ⊆ IP

One possible way to view the definition of interactive proof protocols is as a generalization
of the fact that the class NP consists of languages with short proofs that a polynomial-time
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computation can verify. One way to generalize this notion is to allow the verifier to be
probabilistic and to sometimes make mistakes. The complexity class according to this
definition is denoted MA and was introduced by Babai in [Ba2].

Definition 25. [Ba2] The class of languages MA is defined as follows.
A language L ∈ MA ⇐⇒ there exists a probabilistic polynomial-time verifier V and a
polynomial p such that

• If x ∈ L then there exists a string y{0, 1}p(|x|) such that V (x, y) accepts with proba-
bility greater than 2/3.

• If x /∈ L then there exists no string y ∈ {0, 1}p(|x|) such that V (x, y) accepts with
probability greater than 1/3.

The letters M and A in MA stand for Merlin and Arthur. Merlin is thought to be an
all powerful prover and Arthur the probabilist polynomial-time verifier. On an input x,
Merlin gives Arthur the certificate y, which Arthur can check with some certainty whether
y proves that x ∈ L. The first bullet point in the definition asserts that for a good x
there exists a Merlin who convinces Arthur that x ∈ L with good probability. The second
bullet point asserts that for a bad x there is no Merlin who can trick Arthur into believing
x ∈ L with good probability. If the probability is changed to 1 in the first bullet point of
the definition, then this is referred to as perfect completeness. The class MA is commonly
referred to as the class of languages with publishable proofs that can be statistically verified
at any later time [Ba1].

In the MA scenario Merlin publishes a proof that Arthur can verify with no further
interaction. We can generalize this even further by allowing Merlin and Arthur to interact.
Define the class MAMA similarly to MA except now Merlin gives Arthur a string y1, Arthur
does some probabilistic computation at the end of which he asks Merlin a query q1 (with
Arthur’s coin tosses appended), which Merlin responds to with the string y2. Finally Arthur
does some more probabilistic computation before outputting 0 or 1. Merlin’s response y2
can depend on the input x, Arthur’s query q1 and Arthur’s random coin tosses r1. Formally
we can think of Merlin’s second answer as a function f that takes input x, q1, r1 and outputs
a string y2. If there are even more rounds we can think of Merlin as a function that in
round n takes as input (x, q1, r1, q2, r2, . . . , qn−1, rn−1) and outputs yn.

We will work with the analogous model introduced independently in [GMR], in which
Arthur does not have to share his random coin tosses with Merlin. It turns out that the
two definitions are equally powerful [GS]. When the number of rounds is polynomial the
class is denoted IP and defined as follows.

Definition 26. A verifier is a probabilistic polynomial-time Turing machine that has
a designated communication tape. A prover P is a map fP taking finite sequences
x, q1, q2, . . . , qn where x, qi ∈ {0, 1}∗ for all i to some string yn ∈ {0, 1}∗. A verifier V
and prover P interact by both receiving an input x, and V probabilistically computing
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in polynomial-time a string q1 written on the communication tape. Then P replaces q1
with fP (x, q1). Again V computes and replaces fP (x, q1) with a new string q2 to which P
responds with fP (x, q1, q2). These interactions continue until V outputs a 1 or a 0.

The language L has an interactive proof protocol (V, P ) if V is a probabilistic polynomial
time verifier and P a prover such that

• if x ∈ L, P makes V accept with probability greater than 2/3 in polynomially many
rounds

• if x /∈ L no prover Q makes V accept with probability greater than 1/3 in polynomi-
ally many rounds.

A language L ∈ IP if L has an interactive proof protocol.

Note that the responses yi are assumed to be polynomially long, so that V has time
to read them. In interactive proof variants where the verifier is allowed exponential prob-
abilistic time these responses can be exponentially long. Now we prove PH ⊆ IP according
to Lund, Fortnow, Karloff, and Nisan [LFKN]. In fact, this protocol is sometimes called
the LFKN protocol in the literature.

Recall Toda’s theorem that PH ⊆ P]P, so that if P]P ⊆ IP then PH ⊆ IP. Define a 0-1
matrix to be an integer matrix with entries either 0 or 1. Recall Valiant’s theorem that
]Perm, the problem of computing the permanent of a 0-1 matrix, is ]P-complete. If ]Perm
has an interactive proof system then so does any other language in L ∈ PH ⊆ P]P.

Lemma 27. Let L = {〈M,p〉 |M is a 0-1 matrix , p = perm(M)}. If L has an interactive
proof protocol then so does every language in P]P.

Proof. The class P]P is equivalent to polynomial time with a ]P-complete oracle, so we may
take ]Perm as the oracle. For any language L ∈ P]P the verifier V runs the polynomial time
P]P algorithm, but every time a query is to be made V runs the interactive protocol for
]Perm.

We will show that ]Perm does indeed have an interactive protocol. Note that for an n×n
0-1 matrix M perm(M) cannot exceed n!. Therefore, perm(M) coincides with perm(M)
mod p for a prime p ∈ (n!, 2 · n!). The protocol is based on computations over Zp for such
a prime p. In general, denote the entries of some matrix M by mij so that M = (mij).

Theorem 28. [LFKN] ]Perm ∈ IP.

Proof. The interactive proof protocol begins with V and P receiving the pair 〈M,a〉 where
M is an n × n 0-1 matrix and a is an integer. First V and P need to establish the field
Zp to work over, so P selects a prime p ∈ (n!, 2 · n!) and sends it to V . The language of
Primes has short certificates, so V can request certificates from P to verify that p is indeed
prime. If P fails to prove that p is a prime, V rejects. Now V and P are ready for the
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main portion of the protocol.

During the interaction V will maintain a list of pairs {〈M1, a1〉, . . . , 〈Mk, ak〉} where for
a r ≤ n each Mi is an r× r matrix and ai are integers supposedly representing perm(Mi).
However, V cannot be sure of the validity of the ai if P is malicious. The point of the
protocol is to have V reduce the dimension of the matrices in the list until there remains
just one pair 〈M,a〉 where M is a 1 × 1 matrix, at which point V can check on its own
whether perm(M) = a. There are two stages: 1) if there is one pair in the list, the list will
expand, but the sizes of the new matrices will be one less than the previous matrix, and
2) if there is more than one matrix, then the list will shrink to one pair with a matrix the
same size as all of the matrices previously in the list. Repeating steps 1 and 2 n times will
leave just one pair with a 1× 1 matrix.

Consider step 1, so that the list consists of just one pair 〈M,a〉 where M is r × r.
Then V constructs the minors Mi = M1i 1 ≤ i ≤ r and requests the values perm(Mi)
from P , receiving ai. Note that perm(M) =

∑r
i=1m1iperm(Mi), so V checks that these

new values ai that supposedly represent perm(Mi) are consistent with the previous value
of perm(M). If a 6=

∑r
i=1m1iai then V rejects. Otherwise, V updates the list to

{〈M1, a1〉, 〈M2, a2〉, . . . , 〈Mr, ar〉}.
Now consider step 2 where the list consists of more than one pairs. Let the first two

pairs be 〈M1, a1〉 and 〈M2, a2〉. Consider the polynomial f(x) =perm(M1 − x(M1 −M2))
where M1,M2 are r×r matrices. The polynomial f has at most degree r ≤ n, so V requests
the r+1 coefficients that supposedly represent f . Denote the polynomial constructed from
the coefficients received from P by g. Note that f(0) =perm(M1) and f(1) =perm(M2),
so V can again check for consistency. If g(0) 6= a1 or g(1) 6= a2 then V rejects. Otherwise,
V chooses randomly an α ∈ Zp and sends α to P . V then updates the list by replacing
〈M1, a1〉 and 〈M2, a2〉 by 〈M1 − α(M1 −M2), g(α)〉.

The key realization is that if P attempts to lie by giving an incorrect g then f 6= g.
If g(0) 6= a1 or g(1) 6= a2 then P is caught immediately. Otherwise, the probability that
perm(M1 − α(M1 −M2)) = g(α) for a randomly chosen α is very small because f 6= g.
This inconsistency has a high probability of being revealed in the final step when V has a
single pair 〈M1, a1〉 and accepts if and only if perm(M1) = a1.

See Algorithm 1 for a formal description (we omit the portion regarding the selection
of the prime p). It is helpful to view the description from the point of view of the verifier,
assuming that the verifier has access to some unknown prover. The prover may be honest
or malicious and we shall examine both cases with the formal statement of the algorithm
in mind.

Recall that according to the definition of IP there must exist an honest prover P such
that for any 〈M,a〉 ∈ Perm, P convinces V to accept with probability greater than 2/3. It
is easy to see that such a prover exists because if P answers every query truthfully then
V will always accept with probability 1. The second part of the definition requires that
no prover P can convince V to accept an incorrect pair with probability greater than 1/3.
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So suppose that 〈M,a〉 /∈ Perm and consider how a malicious P could convince V that
perm(M) = a. Since the input 〈M,a〉 /∈ Perm, the protocol begins with perm(M) 6= a.
The invariant that the list contains at least one pair 〈Mi, ai〉 such that perm(Mi) 6= ai is
maintained with high probability throughout the entire protocol. Call such a pair a bad
pair.

Consider the first expansion step. Since a 6=perm(M) =
∑
m1iperm(Mi), if the re-

sponses pass the test (a =
∑
m1iai) then∑

m1iai = a 6= perm(M) =
∑

m1iperm(Mi)

so perm(Mi) 6= ai for at least one pair 〈Mi, ai〉. Of course if the responses don’t pass the
test, V immediately rejects, so P ’s only hope for V to accept is to lie about some ai.

Now consider the first list contraction step. There is some bad pair in this list, so
without loss of generality suppose one of 〈M1, a1〉, 〈M2, a2〉 is a bad pair. Consider what
happens when 〈M1, a1〉, 〈M2, a2〉 are replaced in a contraction step. The prover P has
to provide V with the coefficients of f(x) =perm(M1 − x(M1 −M2)). If the resulting
polynomial g constructed from the received coefficients passes both of the tests g(0) = a1
and g(1) = a2, then either

f(0) = perm(M1) 6= a1 = g(0) or f(1) = perm(M2) 6= a2 = g(1).

In other words, f and g disagree on at least one of these values, so they are two distinct
≤ n degree polynomials that can agree on at most n values. Then for the randomly chosen
α ∈ Zp, perm(M1 − α(M1 −M2)) 6= g(α) with high probability, i.e.

Pr[f(α) = g(α)] ≤ n/p ≤ n/n!.

Of course if g does not pass the two tests, then V immediately rejects, so P has to lie to
have any hope of V accepting.

These tests occur for every expansion step and pair contraction step. If by some small
chance V picks an α such that f(α) = g(α), then P no longer has to lie (P is off the hook)
and can pass all the remaining tests by telling the truth. Since there are (n−1)+(n−2)+
. . . 2 + 1 shrink steps, the number of tests affecting the probability is at most quadratic.
At each step, P has a small chance of absolving the original lie. If this never happens
then the lie will be revealed in the final step when V checks whether M = a. Therefore,
Pr[V accepts] ≤ n3/p ≤ n3/n!.

Summarizing informally, a malicious prover P who desires to convince V of the false
statement perm(M) = a can be viewed as beginning with a lie. Then every step of the
protocol forces P to stay consistent with its initial lie with a small chance of getting away
with the lie.
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Algorithm 1 Interactive Proof Protocol for Perm

Input 〈M,a〉 where M is an n× n 0-1 matrix and a is an integer.
k ← n
list← {〈M,a〉}
while k > 1 do

if | list |= 1 then //list has just one item, denote list = {〈M,a〉}
Construct M1 = M11,M2 = M12, . . . ,Mk = M1k and query P for a1, . . . , ak.
if
∑k

i=1m1iai 6= a then //new permanent values not consistent with the old value
reject

else
list← {〈M1, a1〉, . . . , 〈Mk, ak〉}
k ← k − 1

end if
else

query P for coefficients of the polynomial f(x)=perm(M1 − x(M1 −M2)).
if f(0) 6= a1 or f(1) 6= a2 then //f not consistent with old values

reject
else

Select at random α ∈ Fp.
Send α to P .
list= {〈M1, a1〉, . . . , 〈Mk−r, ak−r〉} ← {〈M1 − α(M1 −M2), f(α)〉 , 〈M3, a3〉, . . . , 〈Mk−r+1, ak−r+1〉}

end if
end if

end while
//list has just one item, denote list = {〈M,a〉} and M is 1× 1 matrix
if M = a then

Accept
else

Reject
end if
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One of the main ideas of this protocol is that two distinct low degree polynomials have
a small probability of agreeing on some value. This idea was combined in [BF] with an
arithmetization of Boolean formulas to create a similar protocol for the number of satisfying
assignment of a CNF formula, bypassing the need for Valiant’s result of the ]P-completeness
of the permanent. Finally, Shamir [Sham] proved that PSPACE = IP by arithmetizing a
quantified Boolean formula with a small degree polynomial.

First note the more standard direction: IP ⊆ PSPACE because a PSPACE machine can
enumerate recursively over all possible coin flips of V and polynomial long responses of P
giving an algorithm similar to the PSPACE algorithm for TQBF.

Lemma 29. IP ⊆ PSPACE

We omit the details and aim to prove the less elementary direction PSPACE ⊆ IP as
in [Sham]. Showing that the PSPACE-complete language TQBF has an interactive protocol
will suffice.

Definition 30. A quantified Boolean formula is a formula consisting of Boolean variables
xi and negations xi with operations ∧, ∨ and quantifiers ∀xi and ∃xi. A quantified Boolean
formula is closed if every variable appears in the scope of some quantifier.

A closed quantified Boolean formula is either true or false. Recall the standard result
that the problem TQBF of deciding whether a (well-formed) closed quantified Boolean
formula is true is PSPACE-complete. Note that a common definition of TQBF requires that
all of the quantifiers appear as a prefix (i.e. Q1x1 · · ·Qkxkq(x1, . . . , xk) where q is quantifier
free), but in our definition we allow the quantifiers and logical operations to appear in any
order. Under both definitions TQBF is PSPACE-complete.

Consider the natural way to algebrize a quantified Boolean formula.

• Replace every xi with a variable zi and every xi by 1− zi where the zi are variables
ranging over the integers.

• Replace every ∧ by multiplication · and every ∨ with addition +.

• Replace every ∀xi with
∏
zi∈{0,1} and every ∃xi with

∑
zi∈{0,1}.

For example consider the closed quantified Boolean formulas

(a) ∀x1∃x2(x1 ∧ x2)

(b) ∀x1∃x2(x1 ∨ x2)

(c) ∀x1∃x2 [(x1 ∨ x2) ∧ ∀x3(x2 ∧ x3) ∨ x1 ∨ x3]

where (a) is false and (b), (c) are true. The corresponding arithmetic expressions are

(a)
∏
z1∈{0,1}

∑
z2∈{0,1}(z1z2)
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(b)
∏
z1∈{0,1}

∑
z2∈{0,1}(z1 + z2)

(c)
∏
z1∈{0,1}

∑
z2∈{0,1} (z1 + z2)

(∏
z3∈{0,1} (z2z3 + z1 + 1− z3)

)
,

which evaluate to an integer. It is not difficult to see that a closed quantified Boolean
formula is true if and only if the corresponding arithmetic expression evaluates to a nonzero
value. For our examples, (a) evaluates to 0, (b) to 3 and (c) to 10. This value can be as
large as O(22

n
) by noting that the maximum value of the arithmetic form of an ∧ of two

subexpressions is the product of the maximum values of the two subexpressions. Similarly,
the the maximum value of an ∨ is the sum of the maximums of the subexpressions. An
existential quantifier can at most double the value of the subexpression and a universal
quantifier can at most square it. The worst case value occurs if there are n universal
quantifiers. In particular, for a given formula there exists a polynomial size prime p such
that the arithmetic expression is not 0 mod p if and only if the expression is nonzero over
the integers. If not, by Chinese remaindering the expression would be 0 modulo the product
of all such prime, which exceeds 22

n
.

The idea of the protocol is very similar to the permanent protocol of simplifying ex-
pressions at each step and selecting random values to plug into a polynomial. At every
step the verifier eliminates the leftmost

∏
zi∈{0,1} or

∑
z1∈{0,1} symbol, and the arithmetic

expression is viewed as a polynomial f(zi) over the variable zi. The verifier receives a
polynomial supposedly representing f(zi) from the prover, performs a check, and chooses
a random number to plug into the polynomial. The process is then repeated with the next
leftmost occurrence of a product or summation sign, thereby simplifying the arithmetic
expression by one variable.

We would like the degree of the polynomials to remain small, but for an expression such
as
∏
z1∈{0,1}

∏
z2∈{0,1} · · ·

∏
zn∈{0,1} (z1 + · · ·+ zn) the corresponding polynomial p(z1) =∏

z2∈{0,1} · · ·
∏
zn∈{0,1} (z1 + · · ·+ zn) has degree 2n−1. A polynomial time verifier cannot

handle expressions that are this large, but luckily there is a trick to get around this problem.

Definition 31. A quantified Boolean formula is simple if the occurrence of every variable
is separated from its point of quantification by at most one universal quantifier.

All three of our examples are simple quantified Boolean formulae. Example (c) is simple
because

• the first occurrence of x1 is not separated from its point of quantification by any
universal quantifiers,

• the first occurrence of x2 is not separated from its point of quantification by any
quantifier at all,

• the second occurrences of x1 and x2 are separated only by ∀x3,
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• both x3 and x3 are not separated from their point of quantification by any quantifiers.

To contrast, the expression ∀x1∃x2∀x3 [(x1 ∨ x2)∀x4 (x1 ∧ x3 ∧ x4)] is not simple because
the second occurrence of x1 is separated by ∀x4 and ∀x3.

Lemma 32. Any quantified Boolean formula of size n can be transformed to a simple
quantified Boolean formula of size polynomial in n.

Proof. Rename every variable xi as x0i . For every occurrence of x0i following a universal

quantifier create an existentially quantified alias xji and insert the expression xji = xj−1i into
the formula. For example, consider ∃x1∀x2∃x3∀x4q(x1, x2, x3, x4) where q is a quantifier
free Boolean formula. Then the transformation gives

∃x01∀x02[
∃x11(x01 = x11)

]
∧ ∃x03∀x04[

∃x21∃x12∃x13(x11 = x21) ∧ (x02 = x12) ∧ (x03 = x13)
]
∧ q(x21, x12, x13, x04).

(The expression xi = xj is merely shorthand for (xi∧xj)∨ (xi∧xj).) Each extra xji allows
xi to hop one more universal quantifier, while preserving the information of the formula
with the clause xj−1i = xji . The resulting quantified Boolean formula is simple because by

definition any xji will have to pass at most only one universal quantifier to reach its point
of quantification. The number of resulting variables is at most quadratic, as each of the n
variables can be separated by at most n universal quantifiers.

Therefore, any closed quantified Boolean formula can be transformed to this form in
polynomial time, so deciding whether a simple quantified Boolean formula is true or false is
PSPACE-complete. Thus we may restrict ourselves to considering simple quantified Boolean
formulas, which allows the degree of the resulting polynomials to remain small.

Lemma 33. If a quantified Boolean formula B is simple then the degree of q(zi), the
polynomial obtained by removing the leftmost

∏
zi∈{0,1} or

∑
zi∈{0,1} in the arithmetic ex-

pression B, grows at most linearly in the size of B.

Proof. The degree of zi of a quantifier free expression containing zi is at most the size of
B. Any summations over other variables do not increase the degree of zi and any product
can only double the degree of zi. Since B is simple, there can be only one such product,
so the degree is at most linear in the size of B.

We are finally ready to give the description of the protocol. On input a closed simple
quantified Boolean formula B of size n, V arithmetizes B to get A. As in the previous
protocol, P initially sends a prime p to V along with a primality certificate. All arithmetic
will be done mod p, and in particular P can always find such a p so that A 6≡ 0 mod p if
and only if A 6= 0. If the certificate failed, V rejects. Alternatively, V could itself select
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a prime p, relying on the fact that A 6= 0 if and only if A 6≡ 0 mod p for most primes
p. Assume that a prime has been established. The main portion of the protocol is better
understood with an example.

Example 34. Let

B = ∀x1∃x2 [(x1 ∨ x2) ∧ ∀x3 ((x2 ∧ x3) ∨ x1 ∨ x3)] with arithmetization

A =
∏

z1∈{0,1}

∑
z2∈{0,1}

(z1 + z2)

 ∏
z3∈{0,1}

(z2z3 + z1 + 1− z3)

 .

Suppose that the prover is truthful and sends the correct value a = 10. Then V requests
the polynomial for

A′(z1) =
∑

z2∈{0,1}

(z1 + z2)

 ∏
z3∈{0,1}

(z2z3 + z1 + 1− z3)


and receives q1(z1). Then V checks that q1(0)q1(1) = a because this would have to be
the case if q1 actually represents A′(z1). Since P was truthful, this test passes. Then V
randomly selects say r1 = 2 and sends r1 = 2 to P . Then A is updated to

A = A′(2) =
∑
z2

(2 + z2)

(∏
z3

(z2z3 + 3− z3)

)
which has value 39, and a is updated to

a = q1(2) (which is also 39 if P is truthful).

Now we repeat, so A′ is updated to

A′(z2) = (2 + z2)

(∏
z3

(z2z3 + 3− z3)

)

of which V requests a polynomial representation from P , receiving a new q2(z2). Then V
checks that a = q2(0) + q2(1). Again, this test passes if P is truthful. Now V randomly
selects say r2 = 3, sends r2 = 3 to P , and updates

A = A′(3) = 5

(∏
z3

(3z3 + 3− z3)

)
= 5

(∏
z3

(2z3 + 3)

)
which has value 75.

At this point, we need to be a bit more careful. If we request a polynomial representing
5 (2z3 + 3) and q3(z3) is the truthful answer then q3(0)q3(1) = 375, 5 times the value of 75.
So we merely account for the leading value 5 by setting

A′(z3) = 2z3 + 3 and

a = q2(3)/5.
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(We can account for the sum of a leading constant in a similar way.) Now V requests the
polynomial representation of A′(z3), receives a new q3(z3), and again checks q3(0)q3(1) = a.
Finally, V selects say r3 = 5 and checks on its own that q3(5) = A′(5) = 13. See Algorithm
2 for a rigorous description

Theorem 35. [Sham] TQBF ∈ IP.

Proof. There are two things to check:

(a) If B is a true quantified Boolean formula then the honest prover P convinces V with
probability at least 2/3.

(b) If B is a false quantified Boolean formula then no prover Q convinces V with proba-
bility greater than 1/3.

If a prover P always responds truthfully to V ’s queries then according to the protocol V
will always accept. On the other hand, if the arithmetization A of a false B is claimed to
be some nonzero value a by a malicious prover P , then P will have to give an incorrect
polynomial q1(z1) to support the false initial claim. Because V performs one of the checks
qi(0) + qi(1) = a or qi(0)qi(1) = a at every step, P will have to continue to lie with high
probability. Just as in the permanent protocol, if p is exponential in the degree of q, then q
can agree with at most deg(q) values with the actual polynomial, and by the lemma deg(q)
is at most linear in the size of B. Therefore, the probability that P gets away with the lie
is low for every step. Since there are at most n steps, the lie will be exposed in the final
step with high probability.

Gathering the previous results we have the theorem.

Theorem 36. PSPACE = IP.

The interactive proof results came as a surprise because it was known that there exists
an oracle A such that coNPA 6⊆ IPA. Since coNP ⊆ PH ⊆ P]P and coNP ⊆ PH ⊆ PSPACE, both
of the inclusions P]P ⊆ IP and PSPACE ⊆ IP are non-relativizing. Therefore, we actually
know that PSPACE = IP, yet there exists a relativized world where these two classes are
not equal.

Using virtually the same ideas, along with a combinatorial lemma, Babai, Fortnow, and
Lund proved that MIP = NEXP in [BFL] i.e. the set of languages with multiple prover interac-
tive protocols is exactly the set of languages decided by nondeterministic exponential-time
Turing machines.

2.2 Algebrizing Interactive Proof Results

In this section we show that the non-relativizing results of the previous section algebraically
relativize, or algebrize for short. Working off of the observation that the previous proof relies
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Algorithm 2 Interactive Proof Protocol for TQBF

Input B a closed simple quantified Boolean formula.
A← the arithmetization of B.
Receive a from P the supposed value of A mod p.
A = a1 +A1 or A = a1A1 where a1 is a constant.
//Say a1 nontrivial if a1 6= 0 when A = a1 +A1 or a1 6= 1 when A = a1A1

while A1 nonempty do
if a1 nontrivial then //have to adjust for the constant a1

if A = a1 +A1 then
a← a− a1 mod p
A← A1

end if
if A = a1A1 then

if a1 = 0 then //trying to divide by 0
Stop and accept if and only if a = 0.

else
a← a/a1 mod p
A← A1

end if
end if

else
A′ ← A1 with leftmost

∏
or
∑

eliminated.
Receive polynomial q(zi) describing A′ from P .
if A1 has leftmost

∑
then

Check q(0) + q(1) = a. Reject if not.
end if
if A1 has leftmost

∏
then

Check q(0)q(1) = a. Reject if not.
end if
Choose randomly ri ∈ Zp and send it to P .
A← A′(ri).
a = q(ri).

end if
end while
if a = a1 then

accept
else

reject
end if
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on treating a Boolean formula as an arithmetic expression, Aaronson and Wigderson [AW]
defined a notion of an oracle that is not only a collection of Boolean functions, but a
collection of polynomials extending Boolean functions. The polynomials are over finite
fields, but agree with the Boolean functions on Boolean inputs. With this definition the
notion of an algebrizing inclusion or separation is similar to the notion of relativization,
but with some differences.

Definition 37. An oracle A is a collection of Boolean functions
{An : {0, 1}n → {0, 1} | n ∈ N}. For a complexity class C denote by CA the class of lan-
guages decidable by a C machine that can query An for any n. Sometimes we will refer to
the oracle A as a language, meaning that a string x ∈ {0, 1}n is in the language A if and
only if An(x) = 1.

For certain complexity classes it is controversial whether to allow the machine to make
superpolynomial queries to the oracle. This trouble usually arises when considering space
bounded complexity classes such as PSAPCE [For]. To avoid confusion let CA[poly] denote
that the C machine can only make queries of polynomial length. Now we define the main
idea of extending an oracle to a low degree polynomial that agrees with the oracle on
Boolean inputs.

Definition 38 ( [AW]). Let An : {0, 1}n → {0, 1} be a Boolean function. Then a poly-
nomial ÃF

n : Fn → F is an extension of An over F if An(x1, . . . , xn) = ÃF
n(x1, . . . , xn)

whenever (x1, . . . , xn) ∈ {0, 1}n. Let A = {An} be an oracle. An oracle extension Ã of
A is a collection of polynomials comprised of an extension ÃF

n of An for every n ∈ N and
every finite field F such that

• there exists a constant c such that mdeg(ÃF
n) ≤ c for every n,F.

Here mdeg(ÃF
n) is the maximum multi-degree of the polynomial ÃF

n, i.e. the greatest degree
of any individual variable xi occurring in the polynomial. For a complexity class C denote

by CÃ the class of languages decidable by a C machine that can query ÃF
n for any n and F.

It is important to note that when a Turing machine has access to Ã the queries it is
allowed to make are comprised of a binary representation of a finite field together with an
finite sequence of integers (z1, . . . , zk) and the address i of the bit of the value ÃF

n(z1, . . . , zn)
that is to be returned by the oracle. We will often refer to Ã as a collection of polynomials,
one for every n and F, but we must keep in mind the accessing mechanism that is meant

by the notation M Ã for some Turing machine M . Of course a Turing machine M can
obtain the entire output ÃF

n(z1, . . . , zn) by querying every address i, and in the description
of algorithms we will say things like “M queries Ã for the value ÃF

n(z1, . . . , zn)”. Now we
define the algebraic extension analogues of relativizing inclusions and separations.
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Definition 39 ( [AW]).

(a) A complexity class inclusion C ⊆ D algebrizes if CA ⊆ DÃ for all oracles A and oracle
extensions Ã.

(b) A complexity class separation C 6⊆ D algebrizes if CÃ 6⊆ DA for all oracles A and oracle
extensions Ã.

If (a) does not hold for an inclusion then we say that it is a non-algebrizing inclusion.
Similarly a separation is non-algebrizing if (b) does not hold.

The most obvious difference from the usual definition of relativization is the asymmetry.
For inclusions only the superset complexity class has access to the extension polynomials,
whereas for separations only the subset complexity class has access to the extension poly-
nomials. Note that for proving that a result is non-algebrizing this definition is stronger:
if we prove that a result does not algebrize under this definition then it does not algebrize
under the definition where both complexity classes have access to the extension polynomi-

als (e.g. if for an inclusion there exists an oracle A such that CA 6⊆ DÃ, then CÃ 6⊆ DÃ as

well since CA ⊆ CÃ ).
On the other hand, this definition is weaker for proving that an existing result algebrizes

(e.g. for an inclusion we need only show CA ⊆ DÃ rather than CÃ ⊆ DÃ). The reason
Aaronson and Wigderson give for choosing this definition is that, “under the definition
where both complexity classes are given the extension polynomials we do not know how to
prove that existing results algebrize” [AW]. We will briefly examine this issue after proving
that P]P ⊆ IP and PSPACE ⊆ IP algebrize under the definition given above.

Consider proving P]P
A ⊆ IPÃ. Given any oracle A we would like to (1) define a P]P

A
-

hard language L and (2) show that L ∈ IPÃ. By IPÃ we mean the class of languages that
have interactive protocols where the probabilistic polynomial-time verifier V has access to
the oracle Ã. We begin by defining the appropriate language L as in [AW].

Definition 40. Let a formula circuit over F be a circuit with

• +, × internal gates

• xi, 1− xi input nodes and constant nodes α ∈ F.

The size of a formula circuit is the number of gates. Such a circuit represents a polynomial
in the natural way by propagating through the gates and applying the operation specified
by the gate. Let ]FSATL,F be the following problem. On input a formula circuit of size at
most L represented by polynomial p over F, compute∑

x1,...,xn∈{0,1}

p(x1, . . . , xn).
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Let ]FSAT be the same problem with input 〈L,F, p〉, i.e. the size and finite field are provided
as input. Note that the size of a 〈L,F, p〉 input instance is taken to be n = L · log | F |
(log | F | bits to specify F, and at most L gates each of which requiring at most log | F |
bits to specify if it is a constant node).

This problem corresponds to the classical ]P-complete problem ]CircuitSAT of counting
the number of satisfying assignments of a circuit. Indeed, if the input circuit is a clas-
sical circuit rather than a formula circuit, then the summation represents the number of

satisfying assignments. Now for an oracle A and extension Ã let ]FSATÃ be the same
problem except that the formula circuit is allowed to have Ã gates, i.e. gates with arbi-
trary fan-in k that on input ak, . . . , ak ∈ Fk output Ã(a1, . . . , ak). If p is the polynomial
representing such a formula circuit of size L then deg(p) ≤ L2mdeg(Ã) where recall that
mdeg(Ãn) ≤ c = mdeg(Ã) for some constant c irrespective of n.

This is the language L that we will use to establish (1) and (2).

Lemma 41. For any oracle A and any extension Ã the problem ]FSATÃ is P]P
A

-hard under
randomized reductions.

Proof. Consider the P]P
A

-complete problem ]CircuitSATAof computing∑
x1,...,xn∈{0,1}

CA(x1, . . . , xn),

where CA is a classical circuit containing A gates. This is simply the relativized version of
]CircuitSAT, the P]P-complete problem mentioned above. We will reduce this problem to

]FSATÃ. Given a circuit CA construct a polynomial p as follows. For each circuit input xa
there will be a variable xa and for each gate g there will be a variable xg. The polynomial p
is the product of the following arithmetic expressions that enforce the correct propagation
of values through the circuit. Suppose an AND gate g computes the AND of gates i and
j. Then xg = xi ∧ xj must hold, which we arithmetize as

xixjxg + (1− xjxj)(1− xg).

Similarly, suppose an OR gate g computes the OR of gates i and j. Then we arithmetize
xg = xi ∨ xj as

(1− xi)(1− xj)(1− xg) + xi(1− xj)xg + (1− xi)xjxg + xixjxg.

A NOT gate g with input i can be represented by (xi ∨xg)∧ (xi ∨xg), which can be arith-
metized by the methods above by inserting (1−xi) and (1−xg) for xi and xg respectively.
Alternatively, NOT gates can be handled at the arithmetization step of the subsequent
gate by inserting 1 − xi as input. Finally, for an oracle gate g arithmetize the constraint
xg = Ak(xi1 , . . . , xik) with

xgÃ
F
k(xi1 , . . . , xik) + (1− xg)(1− ÃF

k(xi1 , . . . , xik))
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where we want the order of F to be large enough as not to affect the sum over Boolean
inputs. To do this we need to select a prime q > 2n for the order of F, which can be done
in randomized polynomial time.

If the resulting polynomial is p(x1, . . . , xn, y1, . . . , yl), then∑
x1,...,xn,y1,...,yl∈{0,1}

p(x1, . . . , xn, y1, . . . , yl) =
∑

x1,...,xn∈{0,1}

CA(x1, . . . , xn).

This proof is essentially the arithmetized version of the proof reducing a circuit to a
Boolean formula. Some complexity texts prove the NP-completeness of 3SAT directly, while
others first prove that CircuitSAT is NP-complete and then reduce CircuitSAT to 3SAT. The
second approaches requires a reduction that encodes the correct functioning of each gate
with a Boolean formula. We have performed the same encoding here except in the context
of arithmetic formulas. In this setting we are able to simulate the oracle with an oracle
extension, which allows us to adapt the interactive proof protocols that we have seen before

to the problem ]FSATÃ.

Proposition 42. If we restrict to ]FSATÃ instances with | F |≥ 3L3mdeg(Ã) then

]FSATÃ ∈ IPÃ.

Proof. Given an input instance 〈L,F, p〉 we would like an interactive protocol verifying the
value given by the prover for

∑
x1,...,xn∈{0,1} p(x1, . . . , xn). The protocol is the same as we

have seen before. The prover P sends the value a. The verifier V then requests P to send
coefficients for the polynomial

p1(x) =
∑

x2,...,xn∈{0,1}

p(x, x2, . . . , xn)

and receives the polynomial q1(x). The verifier checks that q1(0) + q1(1) = a (if not
V rejects), picks a random r1 ∈ F, sends r1 to P , and requests the coefficients for the
polynomial

p2(x) =
∑

x3,...,xn∈{0,1}

p(r1, x, x3 . . . , xn).

The prover sends a new polynomial q2(x) and V checks that q1(r1) = q2(0) + q2(1) (if not
V rejects). This process continues until V requests the coefficients for the polynomial

pn(x) = p(r1, r2, . . . , rn−1, x)

and receives qn(x). As usual V checks qn−1(rn−1) = qn(0) + qn(1) and rejects if the test
fails. Then V picks a final randomly chosen rn ∈ F and at this point V can evaluate
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pn(rn) = p(r1, . . . , rn) on its own using the formula circuit representation of p, along with
its oracle extension Ã. If qn(rn) = pn(rn) then V accepts and rejects otherwise.

The proof of completeness is the same as we have seen before. Any truthful prover will
always be able to back up the claims. On the other hand, if P gives an initial value a that
is incorrect, P can get away with this lie at each step i with probability at most deg(p)

|F| .
Since there are n steps, by the union bound a malicious prover P can successfully trick V
with probability at most

n · deg(p)

| F |
≤ L · L2mdeg(Ã)

3L3mdeg(Ã)
=

1

3
.

Theorem 43 ( [AW]). For any oracle A and extension Ã, P]P
A ⊆ IPÃ.

Proof. The previous proposition gives an IPÃ protocol for ]FSATÃ when | F |> L3mdeg(Ã).
Such instances are P]P-hard under randomized reductions because of the previous lemma
where we can choose with high probability a prime q ≥ 2n > L3mdeg(Ã) for all large
enough n. A randomized reduction suffices because V can be programmed to select a
prime q in randomized polynomial time that will not affect the sum in the protocol with
high probability.

Alternatively, one could combine the lemma and proposition into a single protocol

for the P]P
A

-complete problem of computing
∑

x1,...,xn∈{0,1}C
A(x1, . . . , xn). On input CA

the verifier converts the circuit to a polynomial representation containing Ã polynomial
expressions, and sends this to the prover. The prover then responds with a large enough
prime q along with a certificate of primality. They then proceed with the protocol given
in the proposition. One final thing to note is that we could have even allowed mdeg(Ã) to
be polynomially large.

Showing that PSPACE ⊆ IP algebrizes is done similarly so we briefly sketch the proof.
Recall that the problem TQBF defined above is PSPACE-complete. By examining the proof
of this standard result it is easy to see that for an oracle A, TQBFA is PSPACEA-complete
where TQBFA is the problem of determining whether a closed quantified Boolean formula,
possibly containing A(xi1 , . . . , xik) predicates, is true or not. Here k is a number that is at

most polynomial in the number of inputs. Let Ã be any extension of A. Using Shamir’s
method for arithmetizing a quantified Boolean formula, TQBFA can be reduced to an
arithmetized version of the problem that contains ÃF

h polynomials. This step corresponds
to the above lemma.

The arithmetized version of a problem instance is an arithmetic expression containing
Ã’s where every variable xi occurs in either a

∏
xi∈{0,1} expression or a

∑
xi∈{0,1} expression

i.e. every variable is “arithmetically quantified”. As before, the order of the field is
established either probabilistically by the verifier, or given by the prover with a certificate.
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Then the verifier and prover can carry out Shamir’s interactive protocol for PSPACE with the
only difference being in the last step when the verifier evaluates the final expression using
the Ã oracle. Taken together, this procedure shows that the PSPACEA-complete language

TQBFA is in IPÃ for any A, Ã.

Theorem 44. For any oracle A and extension Ã, PSPACEA[poly] ⊆ IPÃ.

2.3 P]P
Ã ⊆ IPÃ

Now we briefly consider a naive attempt at proving that P]P ⊆ IP algebrizes under the
altered symmetrical definition of an algebrizing inclusion. Using the methods we have

already seen, consider trying to prove for any oracle A and extension Ã that P]P
Ã ⊆

IPÃ. The first step in proving P]P
A ⊆ IPÃ was to identify the P]P

A
-complete language

]CircuitSATA. The analogous choice for a P]P
Ã

-complete problem is ]CircuitSATÃ. Consider

an instance of this problem CÃ where C is a classical circuit operating on Boolean values.
Here it is important to note that Ã represents an oracle that is queried by providing input
xi1 , . . . , xik , j where j is the requested bit of the value ÃF

k(xi1 , . . . , xik). We can arithmetize

the regular gates of C by the usual methods, but it is unclear how to arithmetize the Ã
oracle gates by only using Ã polynomial expressions. The issue is that the Ã oracle gates
do not respect the arithmetic structure of the Ã polynomial expressions because they pick
out a particular bit of the output. To summarize in the language of the lemma, it is unclear

whether it is possible to show that ]FSATÃ is P]P
Ã

-complete.
However, if we view Ã as just some Boolean oracle (as it is from C’s point of view),

then we can use the exact same method as before to show that P]P
Ã ⊆ IP

˜̃
A where

˜̃
A is

an extension of the Boolean oracle Ã. Thus, we once again get an asymmetrical inclusion.
This is just a small bit of reasoning to suggest that perhaps it is the correct definition to

stipulate that an inclusion C ⊆ D algebrizes if CA ⊆ DÃ for all A, Ã.
Aaronson and Wigderson note the relevance of considering a hierarchy of algebrizations

A, Ã,
˜̃
A,
˜̃̃
A, . . . where Ã, a low degree polynomial extension of A, is itself viewed as a Boolean

oracle that is then extended by a low degree polynomial extension
˜̃
A, and so on. Consider

the transitivity property of relativization. If two inclusions C ⊆ D and D ⊆ E relativize,
then C ⊆ E relativizes. Aaronson and Wigderson mention that they do not know whether

the analogous transtivity holds for algebrization. However, it is true that if CA ⊆ DÃ and

DA ⊆ EÃ for all A, Ã, then CA ⊆ E
˜̃
A for all A,

˜̃
A.

Under this notation an inclusion C ⊆ D is double-algebrizing if CA ⊆ D
˜̃
A for all A, Ã,

triple-algebrizing if CA ⊆ D
˜̃̃
A for all A,

˜̃̃
A and so forth. In general, a k-algebrizing result

is k + 1-algebrizing for the same reason that a relativizing result algebrizes. On the other
hand, a k + 1-algebrizing result is not necessarily k-algebrizing, so there is a hierarchy of
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algebrizations. Finally, they prove that P vs. NP is non-k-algebrizing for any k, but mention
that double-algebrizing techniques may be sufficient to resolve P vs. RP or NEXP vs. P/poly.

2.4 P vs. NP is non-algebrizing

In this section we prove by the arguments of [AW] that resolving the P vs. NP question will
require “non-algebrizing techniques.” To do so we would like to prove two things:

(a) there exists an oracle A and oracle extension Ã such that NPÃ ⊆ PA and

(b) there exists an oracle B and oracle extension B̃ such that NPB 6⊆ PB̃.

We begin by proving (a) in a similar way to the usual result that NPA ⊆ PA when A is a
PSPACE-complete language. To do so we need a few facts about multilinear extensions of
Boolean functions. Let F be a finite field. An extension ÃF

n of a Boolean function An is
multilinear if mdeg(ÃF

n) ≤ 1 and multiquadratic if mdeg(ÃF
n) ≤ 2. For a Boolean point

b = b1, . . . , bn define

δb(x1, . . . , xn) =
∏

{i|bi=1}

xi
∏

{i|bi=0}

(1− xi).

These functions evaluate to 1 only on their respective point b and 0 elsewhere. They form
a basis for all multilinear functions f : Fn → F.

Lemma 45. Let f : Fn → F be a multilinear function. Then f can be written uniquely as

f(x) =
∑

b∈{0,1}n
fbδb(x)

where fb ∈ F. For any Boolean point b, f(b) = fb.

Proof. This follows from linear algebra when considering the dual space of the appropriate
vector space.

Using this lemma we may identify any multilinear polynomial with the coefficients fb.

Lemma 46. Let An : {0, 1}n → {0, 1} be a Boolean function. Then An has a unique
multilinear extension ÃF

n : Fn → F.

Proof. Consider the multilinear extension polynomial

ÃF
n(x) =

∑
b∈{0,1}n

A(b)δb(x),

which agrees with An on Boolean inputs and is unique by the previous lemma.
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Babai, Fortnow and Lund [BFL] noticed that the multilinear extension of a PSPACE

language A is also in PSPACE.

Proposition 47. [BFL] Let A be the characteristic function of a PSPACE language and Ã
the unique multilinear extension of A over a field F. Then Ã ∈ PSPACE.

Proof. Note that PSPACEA = PSPACE, so it suffices to show that Ã ∈ PSPACEA. We will
construct an alternating polynomial-time Turing machine with access to A that computes
Ã. Recalling the standard result that an alternating Turing machine can be simulated by
a PSPACE machine this will prove that Ã ∈ PSPACEA.

On input x1, . . . , xn let the alternating Turing machine M existentially guess the
value z = ÃF

n(x1, . . . , xn) and guess the linear polynomial p1(y) = ÃF
n(y, x2, . . . , xn).

Then universally choose z1 ∈ {0, 1} and existentially guess the linear polynomial p2(y) =
ÃF
n(z1, y, x3, . . . , xn) and so forth until z1, . . . , zn have been chosen. Now M uses the oracle

A to verify that An(z1, . . . , zn) = 1.

Therefore, for a PSPACE-complete language A, the multilinear extension Ã is in PSPACE.
In particular, Ã is also PSPACE-complete. With this proposition the proof of (a) follows
similarly to the usual NPA = PA proof.

Theorem 48. There exists an oracle A and extension Ã such that NPÃ ⊆ PA.

Proof. Let A be the characteristic function of a PSPACE-complete language, so that PA =

PSPACE. Then by the proposition Ã ∈ PSPACE which implies that NPÃ ⊆ PSPACE. Therefore,

NPÃ ⊆ PSPACE = PA as desired. (Since Ã is PSPACE-complete, we actually have the equality

NPÃ = PA.)

The same exact proof yields the following theorem.

Theorem 49. [AW] There exists an oracle A and an extension Ã such that PSPACEÃ[poly] ⊆
PA.

Furthermore, since Ã is PSAPCE-complete, the unique multilinear extension
˜̃
A of the binary

representation Ã is also PSPACE-complete. Therefore, NP
˜̃
A = PSPACE = PA as well. In

fact, this holds for any k-extension, so a potential proof that NP 6⊆ P will require non-k-
algebrizing techniques for all k as we alluded to above.

Now we turn to proving (b), which will be similar to the proof of the standard result.
Recall that the oracle B such that NPB 6⊆ PB is defined in stages. For any oracle B let

LB = ∪n∈N {1n : ∃w ∈ {0, 1}n s.t. w ∈ B} ,

so that LB ∈ NPB. As in the classical case, we will show that LB /∈ PB̃. However, now

the extension B̃ needs to be constructed so that the PB̃ machine cannot exploit the extra
algebraic structure of B̃ to decide LB.
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Recall the classical strategy: the existence of B is established by considering at stage
i the ith oracle machine Mi in an enumeration of polynomial-time machines with oracle
access to B. Fixing an appropriate ni, if Mi(1

ni) accepts then define x /∈ B for all x ∈
{0, 1}ni . In this case 1ni /∈ LB, but Mi accepts 1ni . Otherwise, if Mi(1

ni) rejects then
define x /∈ B for every x that the computation Mi(1

ni) queried. Having set ni so that
Mi(1

ni) does not have time to query every x ∈ {0, 1}ni , there exists a y ∈ {0, 1}ni for
which we can declare y ∈ B. In this case 1ni ∈ LB, but Mi rejects 1ni .

From the perspective of Mi if it ever receives a YES answer on a query of length ni
then it accepts. To avoid this we construct B such that the oracle answers NO on Mi’s
queries of length ni and Mi does not have time to ask about all of them. Thus once Mi’s
time is up it has only seen NO answers, so it does not know for certain whether there truly
is no string of length ni in B or whether it just didn’t have time to ask about the right
string. With whatever guess that Mi makes we can construct B such that the opposite is
true.

In our algebrization setting Mi can query B̃F
ni for any finite field F. In this case we will

construct B and B̃ so that once Mi’s time is up it does not know for certain whether B̃F
ni

is the actually the identically zero polynomial for every F or whether it just didn’t have
time to query the right value. If Mi accepts, then this case is easy: we define B to contain
no strings of length ni as before and just make B̃F

ni the zero polynomial for all F.
If Mi rejects, then we need to select a single Boolean string of length ni to be in B,

such that there exist extension polynomials that all evaluate to 1 on this string and 0 on all
of the points that Mi had time to query. Then the extension polynomials will be genuine
extensions of B. To rephrase, our goal is to make sure that we can construct extension
polynomials such that there exists a single Boolean input on which all of the polynomials
evaluate to 1 and evaluate to 0 on all of the inputs that Mi queried. A multilinear extension
will not suffice for this purpose, but a multiquadratic extension will. We first establish some
facts about multiquadratic extensions.

Lemma 50. Let F be a field and y1, . . . , yt ∈ Fn. Then there exists a multilinear polynomial
f : Fn → F such that

• f(yi) = 0 for all i, and

• f(w) = 1 for at least 2n − t points w ∈ {0, 1}n.

Proof. Write an arbitrary f : {0, 1}n → {0, 1} as f(x) =
∑

b∈{0,1}n fbδb(x) with fb not yet
specified. Then f(yi) = 0 give t linear equations over F for the 2n variables fb. Therefore,
by linear algebra there exists a solution with at least 2n − t of the fb’s equal to 1.

It would be nice if such multilinear polynomials were sufficient for our purposes, but
they are not. The problem is that on the remaining t Boolean points the multilinear
polynomial f may not be Boolean, so it would not be a true Boolean extension. We
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fix this problem by multiplying two multilinear polynomials together to form a single
multiquadratic polynomial.

Lemma 51. Let F be a field and y1, . . . , yt ∈ Fn. Then for at least 2n−t points w ∈ {0, 1}n
there exists a multiquadratic polynomial g : Fn → F such that

• g(yi) = 0 for all i,

• g(w) = 1,

• g(w′) = 0 for all w′ ∈ {0, 1}n such that w′ 6= w.

Proof. Take f from the previous lemma and choose a Boolean w such that f(w) = 1. Then
setting g(x) = f(x)δw(x) gives a multiquadratic polynomial with the desired properties.

We would like a similar result stating that there exist gF for every F in some collection
of fields F . The YF’s in this proposition will represent the points on which Mi queries the
extension polynomials.

Proposition 52. Let F be a collection of fields and YF ⊆ Fn. Let s =
∑

F∈F | YF |. Then
for 2n − s Boolean points w there exist multiquadratic polynomials gF : Fn → F, one for
every F ∈ F , such that

• gF(y) = 0 for all y ∈ YF and F ∈ F ,

• gF(w) = 1 for all F ∈ F ,

• gF(w′) = 0 for all Boolean w′ 6= w and F ∈ F .

Proof. This is immediate from the previous lemma since each F can prevent the result from
holding for at most | YF | points.

Now we are ready to prove the separation relative to an extension oracle following the
outline given above.

Theorem 53. [AW] There exists an oracle B and a multiquadratic extension B̃ of B such

that NPB 6⊆ PB̃.

Proof. For any oracle B the language LB = ∪n∈N {1n : ∃w ∈ {0, 1}n s.t. w ∈ B} is in NPB.

We will define an oracle B along with a multiquadratic extension B̃ such that LB /∈ PB̃.
Consider the notation LB(1n) = 1 if 1n ∈ LB and LB(1n) = 0 otherwise. Adopt a similar
notation for Turing machines.

Let M1,M2, . . . be an enumeration of (nlogn)-time deterministic Turing machines with
oracle access to B̃. The oracle B and extension B̃ are defined in stages based on Mi’s
computation on 1ni . At any stage i it has been determined for a finite number of strings x
whether x ∈ B, and for every j < i there exists an nj such that LB(1nj ) 6= Mj(1

nj ). Let
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Sj be the set of indices n such that Mj on input 1nj has queried a B̃F
nj . Let Ti = ∪j<iSj .

Then for any n ∈ Ti every B̃F
n is already determined and will not change for any other

stage ≥ i.
Let ni be the least index n such that n /∈ Ti and 2n > nlogn. At stage i continue the

construction of B and B̃ by observing Mi’s computation on input 1ni .

(a) If Mi ever makes a query to a B̃F
n for a n ∈ Ti then respond consistently because B̃F

n

is already completely determined by the previous stages.

(b) If Mi makes a query to a B̃F
n for an n 6∈ Ti then return 0 for that query.

At the end of Mi’s computation, let Si be set of indices n such that Mi makes a query to
some B̃F

n. For the new indices n ∈ Si \ Ti such that n 6= ni define for all F, BF
n = 0 to be

the identically-zero polynomial. We now have two cases.

(a) If Mi accepts then set B̃F
ni equal to the identically-zero polynomial.

(b) If Mi rejects then let YF be the set of points y ∈ Fni that Mi queries B̃F
ni on. Since∑

| YF |< nlognii , by the proposition there exists a Boolean point w such that there
exist multiquadratic polynomials gF : Fni → F such that

• gF(y) = 0 for all y ∈ YF for all F,

• gF(w) = 1,

• gF(w′) = 0 for all Boolean w′ 6= w.

Setting B̃F
ni = gF for every F and B(w) = 1 implies that L(1ni) = 1, yet Mi rejects

1ni .

We have shown two things: (1) that the non-relativizing interactive proof results alge-
brize, and (2) that resolving the P vs. NP question will require non-algebrizing techniques.
In addition to (1), there are a number of other true complexity statements that are non-
relativizing, yet are algebrizing. For example, one can show that NEXP ⊆ MIP algebrizes
by defining a convenient NEXP-complete language and following the details of the original
proof.

There are also circuit lower bound results that avoid both the relativization barrier
and natural proofs barrier. One such result that avoids both of the previous barriers is
MAEXP 6⊆ P/poly where MAEXP is the class of languages with a one round Merlin, Arthur
protocol where the verifier Arthur is allowed exponential-time. It can be shown that this
separation algebrizes, so although this result avoids the previous two barriers it is still
subject to algebrization.
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The second portion (2) says that current techniques that can avoid relativization and
natural proofs are not enough to resolve P vs. NP. In fact, many other open questions
are non-algebrizing. It can be shown that there exists an oracle A and extension Ã such

that NPA 6⊆ BPPÃ, and an oracle and extension such that NEXPÃ ⊆ P/Poly
A. There also

exist A, Ã such that RPA 6⊆ PÃ where RP is the randomized class with one-sided error. (Of

course, our previous result that there exist oracles A, Ã such that NPÃ ⊆ PA handles the

other direction, since RPÃ ⊆ NPÃ.) Therefore, even resolving RP vs. P will require non-
algebrizing techniques. As mentioned above, it is not known whether there exist oracles

A,
˜̃
A such that RPA 6⊆ P

˜̃
A, so although this problem is not solvable by the techniques of

arithmetization, it may be solvable by techniques of double-algebrization.

3 Avoiding the Barriers

In this section we briefly touch on the main ideas of the recent results of Ryan Williams
[WIL10], [WIL11]. We prove a central result that outlines this strategy for avoiding com-
plexity barriers. The main idea lies in proving that upper bounds imply lower bounds
by contradicting hierarchy theorems. In fact, this strategy can already be seen in proofs
of much more elementary results in complexity theory. To illustrate, recall the following
standard theorems regarding the conditional collapse of the polynomial hierarchy.

Theorem 54. If P = NP, then P =
∑

2.

Theorem 55. If EXP ⊆ P/poly, then EXP =
∑

2.

Here
∑

2 is the second level of the polynomial hierarchy. These theorems are then used
to prove the following conditional lower bound.

Corollary 56. If P = NP then EXP 6⊆ P/poly.

In other words, P = NP and EXP ⊆ P/poly cannot simultaneously hold. The proof is by
contradiction: assume to the contrary that EXP ⊆ P/poly, so that EXP =

∑
2. Then P = NP

implies that P =
∑

2 = EXP, but this contradicts the time hierarchy theorem.
Therefore, the upper bound NP ⊆ P implies the lower bound EXP 6⊆ P/poly. Or equiv-

alently a polynomial-time algorithm for an NP-complete problem implies the lower bound
EXP 6⊆ P/poly. The main idea behind Ryan Williams’s work is that we do not have to
assume an upper bound as strong as NP ⊆ P, but that even a slight improvement to the
run-time of the trivial algorithm for an NP-complete problem will be sufficient to prove
weaker lower bounds such as NEXP 6⊆ P/poly.

Consider the trivial algorithm for solving deterministically a problem in NP. If L ∈ NP

has witnesses of length nk, then enumerating over every witness and running the polynomial
time verifier gives an algorithm with running time O(2n

k · poly(n)). For the concrete
example of CircuitSAT this algorithm runs in O(2n · nk) time where the problem instance
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circuit has n inputs and nk gates. However, for many NP-complete problems there have
been minor improvements to the trivial brute-force algorithm [WIL10], [CIP], [DH]. It
turns out that a sufficiently strong, but not unreasonable, improvement to the correct
problem yields lower bounds.

Our aim will be to prove the following theorem.

Theorem 57. [WIL10] Suppose that there exists a superpolynomial function s(n) such
that CircuitSAT on circuits with n variables and nk gates can be solved in 2n ·poly(nk)/s(n)
time by a deterministic algorithm for all k. Then NEXP 6⊆ P/poly.

Our argument will derive a contradiction to the nondeterministic-time hierarchy theorem.
Recall the standard formulation.

Theorem 58. Let f, g : N → N be time-constructible functions such that f(n + 1) =
o(g(n)). Then NDTIME(f(n)) ( NDTIME(g(n)).

To accomplish our goal we need the notion of a witness circuit, which was studied
by Impagliazzo, Kabanets, and Wigderson [IKW] in the setting of hardness-randomness
tradeoffs (to prove NEXP ⊆ P/poly ⇐⇒ NEXP = MA). The definitions we will need are as
follows.

Definition 59. Let L ∈ NTIME(t(n)) for some function t. A polynomial time algorithm V
is verifier for L if

x ∈ L ⇐⇒ ∃y (| y |≤ t(| x |)) such that V (x, y) = 1.

Definition 60. A language L ∈ NTIME(t(n)) has S(n)-size witness circuits if for every
polynomial time verifier V for L there exists a size S(n) circuit family {Cn} such that

x ∈ L ⇐⇒ V (x,w(x)) = 1

where w(x) is the concatenation of the outputs C|x|+|z|(〈x, z〉) evaluated over z ∈ {0, 1}dlog(t(n))e+1

in lexicographic order.

The input x can be thought of as being fixed and C|x|+|z|(〈x, z〉) producing the witness

string w(x) as z ranges lexicographically over {0, 1}dlog(t(n))e+1. Thus, if the circuit family
{Cn} has small size, every input x that is a member of L has a witness that is easily encoded.
We quote, but do not prove, a result that follows from [IKW] and proved in [WIL10]. The
proof uses previous work of [BFNW] on hardness-randomness relations.

Lemma 61. If NEXP ⊆ P/poly then every language in NEXP has polynomial size witness
circuits.
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We will use the contrapositive of this by first proving that NEXP does not have poly-
nomial size witness circuits if CircuitSAT has a faster algorithm. This will prove that
NEXP 6⊆ P/poly. Consider the following lemma that quantifies, a bit more carefully than
usual, the exponentially padded version of the Cook-Levin reduction of languages to 3SAT,
along with a standard fact about converting an algorithm into a circuit.

Lemma 62. Every language L ∈ NTIME[2n] can be reduced to 3SAT instances of b · 2n · n4
size. In particular, there exists an algorithm that on input x and an index i ∈ [b · 2n · n4]
outputs the ith clause of the 3SAT formula corresponding to x in O(n4) time.

Lemma 63. An algorithm running in t(n)-time can be simulated by a circuit family of
size t(n)2.

Now we are ready to prove the main result.

Theorem 64. Let s(n) be a superpolynomial function and let c, k be constants. Let a(n)
be a monotonically increasing, unbounded function such that

• s(n)
(nk+n8)c

≥ Ω(n4 · a(n)) and

• nk ≤ O( 2n

n·a(n)).

Suppose that CircuitSAT on n variables and m gates can be solved deterministically in
O(2

n·mc
s(n) ) time for some constant c. Then NTIME[2n] does not have nk-sized witness circuits.

This statement can be proved in greater generality by replacing nk with any function
T (n) that adheres to the hypothesis, but we choose nk for concreteness because it will
suffice for our purposes.

Proof. First note that such a function a(n) does indeed exists for any choice of c, k. Suppose
to the contrary that every language in NTIME(2n) has witness circuits of size nk. We will
show that this contradicts the nondeterministic-time hierarchy theorem.

Let L ∈ NTIME(2n). Then by lemma 62, L can be reduced to 3SAT instances of size
b ·2n ·n4 for a constant b. Define V (x, y) to be the polynomial time verifier that on input x
reduces x to the 3SAT instance φx of size at most b · 2n ·n4, plugs in yi for the ith variable
in φx, and returns the value that the formula evaluates to. Since L has nk-size witness
circuits, for all x ∈ L there exists a witness string y of length at most b · 2n · n4 such that
there exists a circuit Cx that encodes y. Note that Cx takes as input strings of length
l = log(b · 2n · n4) so that the concatenation of Cx(z) over z ∈ {0, 1}l equals y.

We give a nondeterministic algorithm N for deciding L. On an input x, nondetermin-
istically guess the witness circuit Cx. Because of the size of Cx this takes nk · log(nk) ≤
O(2

n·log(nk)
a(n)·n ) ≤ O( 2n

a(n)) nondeterministic bits by the second bullet point in the assumptions.
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Construct a circuit D with the help of Cx. Recall that given an integer i ∈ [b · 2n · n4] the
ith clause of φx can be computed in O(n4) time, so by lemma 63 there is a circuit E of size
O(n8) that takes l bits representing the integer i and outputs the binary representation of
three indices in [b · 2n · n4] representing the three variables in the ith clause of φx. Call
these representations z1, z2, z3 that encode say the variables yj1 , yj2 , yj3 . It also outputs
three bits b1, b2, b3 such that bk is true if yjk is negated in the clause. For example, if the
ith clause is yj1 ∨ yj2 ∨ yj3 then b1 = 0, b2 = 0, b3 = 1. Thus, E takes as input l bits and
outputs 3l+3 bits. The circuit D consists of the circuit E followed by feeding the 3l output
bits of E representing z1, z2, z3 each into a copy of Cx. Recall Cx takes l input bits and
each zi is l bits long. Define the wires a1 = Cx(z1), a2 = Cx(z2), a3 = Cx(z3). Then D
outputs ¬ [(a1 ⊕ b1) ∨ (a2 ⊕ b2) ∨ (a3 ⊕ b3)]. See figure 3 for an illustration of D.

Figure 3: Circuit D constructed from E and 3 copies of Cx

In other words, for a length l binary string i representing an integer in [b · 2n · n4],
D(i) outputs 1 if and only if the ith clause of φx is not satisfied by the values assigned
to the variables in the clause by the nondeterministically guessed witness circuit Cx. In
particular, if D is satisfiable then there exists a clause in φx that is not satisfied. The
circuit D has size O(n8 + nk) and l inputs, so the nondeterministic algorithm N uses the
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fast CircuitSAT algorithm to determine whether D is satisfiable in O(2l · (n
8+nk)c

s(n) ) time.
The total running time is then

O

(
2n

a(n)
· 2l · (n8 + nk)c

s(n)

)
= O

(
2n

a(n)
· 2n · n4 · (n8 + nk)c

s(n)

)
≤ O

(
2n

a(n)
· 2n · 1

a(n)

)
≤ O(

2n

a(n)
).

Therefore, L ∈ NTIME[2n/a(n)] implying that NTIME[2n/a(n)] ⊆ NTIME[2n], but this contra-
dicts the nondeterministic-time hierarchy theorem.

Under the assumptions of the theorem NTIME[2n] does not have nk-sized witness circuits
and this holds for every k. Therefore, NTIME[2n] does not have polynomial size witness
circuits. Then by the contrapositive of lemma 61 we have that NEXP 6⊆ P/poly. Therefore,
we have proved our goal.

Theorem 65. Suppose that there exists a superpolynomial function s(n) such that CircuitSAT
on circuits with n variables and nk gates can be solved in 2n · poly(nk)/s(n) time by a de-
terministic algorithm for all k. Then NEXP 6⊆ P/poly.

Therefore, if there exists a slightly better CircuitSAT algorithm, then this method would
get around relativization, natural proofs, and algebrization. It gets around the natural-
ization barrier by using diagonalization in the form of the nondeterministic-time hierar-
chy theorem. The hierarchy theorems use diagonalization to single out a specific func-
tion rather than reasoning about a whole set of functions with a property. Furthermore,
Williams claims that faster algorithms would avoid relativization and algebrization because
all known nontrivial SAT algorithms do not relativize or algebrize i.e. a faster SAT algo-
rithm cannot be trivially adapted to solve SATA (CNF formulas with A predicates) when
given the oracle A.

Consider the following. Let B be the oracle such that PB 6= NPB. Suppose we are
trying to prove that P = NP by coming up with a polynomial time algorithm for SAT and
succeed by writing down a polynomial time algorithm G. Now suppose that for any oracle
A that this same algorithm G with access to A can be blindly applied to solve SATA. Then
in particular, G with access to B solves SATB proving that PB = NPB, a contradiction.
Therefore, the algorithm G must break down when trying to apply G to solve SATB, and
for any other oracle C for which PC 6= NPC holds for that matter. The claim is that this is
true for all known slight, yet interesting, improvements on SAT algorithms.

However, it is believed that P 6= NP, so one would hope that there actually is no
genuinely polynomial time algorithm G for SAT that breaks down when applied to SATB

for appropriate B. Yet, at the same time, we do want a slightly weaker algorithm G′ that
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does break down for appropriate B’s, so that we can prove results like NEXP 6⊆ P/poly that
we should be able to prove. The algebrization barrier says that all of the above reasoning
holds in the context of extension polynomials for oracles i.e. the potential polynomial
time algorithm G when given access even to B̃ would have to break down when applied to
solving SATB.

Thus, we see that this result draws together many ideas of complexity theory, working
on a fine duality between upper bounds and lower bounds. In particular, Williams [WIL11]
used this technique to prove that NEXP 6⊆ ACC0 by designing a faster algorithm to solve
CircuitSAT restricted to ACC0 circuits. The algorithm draws on multiple ideas in algorithm
design, namely that of matrix multiplication and dynamic programming. This result backs
up the previous claims that this technique avoids relativization and algebrization because
there is a known oracle A such that NEXPA ⊆ ACC0

A
and an oracle B and extension B̃ such

that NEXPB̃ ⊆ ACC0
B

. This is indeed a non-algebrizing result. Considering the natural
proofs barrier however, there is not much evidence ACC0 has pseudorandom generators, so
it may be that this result did not have to confront the natural proofs barrier at all. Thus,
it cannot be used as concrete evidence that this technique does not naturalize, although
the use of diagonalization is good evidence that it does not.
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